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In Short

• We study parameter inference for cognitive models
of eye-movement control during reading.

• For the class of dynamical cognitive models being
investigated a likelihood function can be computed
numerically for experimental data sets.

• Using adaptive Markov Chain Monte Carlo
(MCMC) techniques, we implemented a Bayesian
approach for model parameter inference.

• We aim at increasing the applicability of this ap-
proach by improving means of constructing the
likelihood function as well as estimation algo-
rithms.

• In perspective, this approach might be exploited
for gaze prediction in everyday tasks (e.g. human-
machine interaction, driving).

In cognitive modeling, we investigate mathemati-
cal and computational approaches to explain human
behavior based on assumptions on information pro-
cessing of mind and brain. Model fitting and compari-
son are increasingly important due to growing model
complexity and competing modeling approaches.

Experimental data are available as fixation se-
quences from eye-tracking experiments (time series),
i.e., sequences of spatial fixation locations and fixa-
tion durations of the eyes within the stimulus display.
We developed a procedure for computing the likeli-
hood of fixation sequences for our models given a
set of model parameters. This likelihood function is
fundamental for a Bayesian approach to parameter
inference. Since we work with time-ordered data,
this framework is called data assimilation.

In a Bayesian approach, advanced Markov Chain
Monte Carlo (MCMC) methods exploit the likelihood
function to generate a posterior sampling distribu-
tion of model parameters for a given data set based
on priors on model parameters. Feeding the ob-
tained parameters back into the generative mod-
els allows us to compare empirical with simulated
data. This provides extremely sensitive information
for model evaluation and improvement. We success-
fully demonstrated the viability of our approach [1,2]

and seek to advance its applicability by improving
on the means of constructing the likelihood function,
as well as researching more effective estimation al-
gorithms.

Since the eyes are both sensory and motor sys-
tems, they are among the best experimental mea-
sures of ongoing cognition. We investigate several
dynamical models which generate sequences of eye
movements during reading [1], scene perception [2]
and maintained fixation [3]. The project currently
focuses on dynamical models of eye-movement con-
trol during reading, which is an important area of
cognitive modeling.

As high-acuity visual perception is limited to the
very center of the visual field (the fovea) and visual
information processing is only efficient if the eye is
stationary, our visual system has to apply a discrete
sampling strategy. The eye performs a rapid se-
quence of fast eye movements (saccades, about 3-4
times per second) to minimize flight time, while infor-
mation processing is done during fixations (average
duration 200 ms). In reading, approximately one
fixation is generated per word, however, there is sta-
tistical variability depending on word length and word
difficulty. Even during reading of simple texts, only
50% of all saccades move the gaze from one word
to the next (see Fig. 1). Frequently, refixations of
the same word, skippings, and regression (saccades
that go against reading direction) are observed.
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Figure 1: Saccades during reading. Only about 50% of the
saccades during reading move the eye from word n to n+1. Other
types of saccades are skippings, refixations, and regressions.

The SWIFT model of eye-movements during read-
ing [1] is a dynamical model that generates all types
of saccades from a theoretically coherent frame-
work using a temporally evolving neural activation
field (Fig. 2). The model combines well-established
cognitive assumptions on sensorimotor processing,
attention, and word recognition with neurophysiolog-
ical plausibility (e.g. partial independence of spatial
and temporal control of saccades).

The model uses stochastic internal (latent) states
that need to be approximated in the numerical com-
putation of the likelihood function. Since the log-
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Figure 2: SWIFT model. Visualization of a simulated gaze tra-
jectory from the SWIFT model of eye-movement control during
reading. The three curves on the left part (grey) represent inter-
nal processes of saccade programming, while the right curves
(colors) indicate word recognition processes during the reading
process.

likelihood function is a sum of statistically indepen-
dent likelihoods for single experimental trials (100 to
1,000 for a typical experiment), the numerical calcu-
lations are ideally implemented via parallel computa-
tions.

An important challenge for parameter inference of
cognitive models is the fact that statistical random ef-
fects are observed due to inter-individual differences
(e.g., reading span of experimental participants) and
text material (e.g., text genre). The Bayesian ap-
proach can account for both of these random effects
simultaneously by using hierarchical priors on the
model parameters.

The complexity of the posterior distributions and
high dimensionality of the parameter space requires
advanced sampling strategies within the MCMC
framework. We successfully employed approximate
Bayesian computation, pseudo-marginal likelihood
methods and differential evolution algorithms to in-
crease computational performance.

Using the HLRN-IV computing facilities, we imple-
mented a fully Bayesian framework for parameter
inference [2] and used an adaptive MCMC proce-
dure, the DREAM framework with improvements [4].
For parameter estimation, we used eye tracking data
of 36 participants who read 150 single sentences
each. For every participant only 70% of the data
were needed during the estimation (training data),
so that the remaining 30% of the data (test data)
were available for simulated data sets which were
based on point estimates of the obtained posterior
parameter distributions. We compared typical mea-
sures of fixation durations (contingent on saccade
programming) and fixation probabilities (relating to
oculomotor behavior and target selection). The com-
parisons indicate a remarkable agreement of simu-
lated and experimental data (Fig. 3).
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Figure 3: Relationship between fixation probabilities (left) and
mean fixation durations (right) of simulated and experimental data.
Each datapoint represents one participant.

We will explore additional techniques for synthetic
and approximate likelihood computations to improve
the efficiency of our simulations. In perspective, our
approach to model identification for individual ob-
servers could be used to implement gaze prediction
across tasks on the basis of mobile eye-tracking de-
vices. A potential application is the surveillance of
human-machine interaction.
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https://www.sfb1294.de/research/research-area-
b/b03/
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