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Inferring mass fluxes in diverse microbial communities  

Large-scale mechanistic microbial ecosystem models are automatically calibrated to high-
resolution time-series observations using numerical optimization to infer mass fluxes  

 

F. Hellweger, M. Mayerhofer, J. Hoffmann, F. 
Eigemann, C. Lackner, Water Quality 
Engineering, TU Berlin  

 In Short  

• Mass fluxes between microbes, e.g. from 
phytoplankton A to bacteria B, can be inferred 
from time series observations 

• Our FluxNet method uses numerical optimization 
to calibrate a mechanistic microbial ecosystem 
model to time series data 

• The method is applied to a number of different 
locations to learn about the ecology in these 
systems 

 

 
    
Microbes are members and affect the functioning 
of many ecosystems, from the human gut to the 
global ocean, with important implications for health 
and climate. Components of these complex, 
diverse and dynamic systems, e.g. microbes and 
substrates, can be observed at high resolution 
using modern technologies. However, a critical 
step towards a quantitative understanding is to 
also characterize interactions, i.e. how mass 
moves through these ecological networks. For 
mass fluxes, observations are still limited to few 
samples, and bulk ecological compartments or 
select types. Consequently, interactions have to be 
inferred from observations of components, like time 
series data.  

Past approaches to infer interactions from microbial 
time series data have been mostly empirical, 
including principal component analysis (PCA), non-
metric multidimensional scaling (NMDS), empirical 
dynamic modeling (EDM) and various regression 
and correlation analyses. These empirical methods 
can point to possible interactions, but results can be 
difficult to interpret mechanistically (e.g. virus-virus 
interaction) and are not quantitative (e.g. do not 
provide carbon flux between species).  

Mechanistic models describe the time evolution of 
components using differential mass balance 
equations that include specific interaction terms, like 
exudation of dissolved organic matter (DOM) by 
phytoplankton and assimilation by heterotrophic 
bacteria (hereafter bacteria). Parameters, like half-
saturation constants, can be calibrated to 
observations using numerical optimization routines, 
but past applications have been limited to few 
components.  

We previously developed the FluxNet method, which 
is based on a mechanistic model that is upscaled to 
hundreds of state variables and thousands of 
parameters. Parameters are optimized/calibrated to 
minimize the discrepancy between the model and 
observations. The optimization is challenging 
because of the many components, nonlinear 
interactions, and resulting local optima in the 
objective function.  

A novel feature of our method is that it mimics natural 
speciation, where a coarse-grained model is 
gradually de-lumped to a finer resolution. This is 
illustrated in Fig. 1, which shows how the model starts 
with just one component in each ecological 
compartment (Fig. 1E) This model is optimized until 
a threshold is reached, and then all species are de-
lumped/split into two, followed by another round of 
optimization and so on. During the course of the 
optimization, with time or model runs, the number of 
components and parameters increase, and the total 
error generally decreases, although there can be a 
transient increase when new species are introduced 
(Fig. 1A&B). This way the optimization routine works 
with a smaller model on average and computational 
effort can be directed to a smaller set of parameters 
corresponding to newly introduced species, and the 
performance increases (Fig. 1C). 

In this project we apply the FluxNet method to 
additional locations, including English Channel (EC), 
Bermuda Atlantic Time Series (BATS), Müggelsee 
(MUG) and others. Each application constitutes an 
extension from the Helgoland application in different 
dimensions (e.g. vertical resolution) and different 
science objectives, as outlined below. 

 

 
  



 abc12345  

 

 

 

 

 

 

Fig. 1. FluxNet inference method illustration. (A) Number components and optimized 
parameters. (B) Error for entire model (Total) and selected individual observations (rst = R. 
styliformis, pol = Polaribacter, lam = particulate chrysolaminarin). Best of 128 replicate 
runs. (C) Diversification of chrysolaminarin uptake affinity (max. heterotrophy rate / half-
saturation constant). (D) Method performance with and without de-lumping. (E) Network 
corresponding to different de-lump levels. 
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