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Hybrid halide perovskites: Doping vs stability

Structural and electronic properties of hybrid halide perovskites: FA, .Cs Pbl;
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improve stability of the hybrid halide perovskite
formamidinium lead triiodide (FAPbIs3) by doping
with Cs

lattice strain upon doping stabilises cubic per-
ovskite structure

* large supercell calculations are needed to investi-
gate small doping concentrations

contribute to in-depth atomistic understanding of
alloy formation in hybrid halide perovskites

Hybrid halide perovskites have shown huge poten-
tial as possible solar cell materials for the third
generation of photovoltaic devices. This is mainly
due to their proven ability to reach high light-to-
electricity conversion efficiencies and their low pro-
duction costs [1].

However, similar to the most investigated hybrid
halide perovskite, methylammonium lead triiodide
(MAPbDI3), formamidinium lead triiodide (FAPblIs)
faces stability issues as well, which have hindered a
large scale application as solar cell material in pho-
tovoltaic devices. Both hybrid halide perovskites can
exist in the cubic perovskite structure APbls, where
the A-site cations comprise an organic methylam-
monium cation CHzNH; (MA*) or a formamidinium
cation CH(NH.); (FA*), respectively.

At room temperature, FAPbI; crystallises in a
hexagonal non-perovskite § phase of space group
P63me, and an unstable cubic perovskite « phase.
Therein, the organic FA™ cations show a complex
distribution pattern. However, it has been suggested
that small doping on the A-site with inorganic Cs™
cations, can stabilise the cubic perovskite struc-
ture [2].

Another issue that strongly affects the applicabil-
ity of a material for photovoltaic devices concerns
the defect characteristics. In order to obtain an
atomic scale insight into structural properties and a
subsequent defect characterisation in FAPbl3; and
FA,_.Cs,Pbls, first-principles calculations based on
density functional theory (DFT) are the method of
choice. The best practices for first-principles mod-
elling of defects in lead halide perovskites have been
summarised by Meggiolaro and De Angelis [3]. They

state that an accurate description of defects in those
materials requires geometry optimisations based on
hybrid functionals, e.g. HSEO06 [4], with spin-orbit
coupling effects taken into account. The huge influ-
ence of the level of theory on the band edge energies
is exemplary shown for MAPblI; in Fig. [1].

Another issue relates to the description of
bonds between the inorganic cage and the organic
molecules. The incorporation of Cs* cations into
FAPDbI; results in structural distortions, which influ-
ence the hydrogen bonding interactions between the
FA™ cations and the [Pblg] framework. These hy-
drogen bonding interactions lead to an increased
stability of the perovskite « phase, and have to be
taken into account by additional dispersion correc-
tions in the calculations.

Here, we want to address the structural proper-
ties of the parent compound FAPbI; and Cs-doped
systems FA;_,Cs,Pbl; (x<0.25), keeping in mind
the requirements for a subsequent analysis of the
defect characteristics. To this end, we employ
DFT calculations utilising different versions of the
exchange-correlation functional, namely the stan-
dard generalised gradient approximation (GGA) in
the parametrisation of Perdew et al. revised for
solids (PBEsol) [5], the newly introduced SCAN func-
tional [6], which shows superior behaviour for the
structural properties of hybrid perovskites over com-
binations of GGA-based functionals plus various ad-
ditional dispersion-correction schemes [7], and the
more accurate hybrid functional HSEO06 [4]. Calcula-
tions based on hybrid functionals have been shown
to yield improved structural and electronic properties
compared to the standard GGA parametrisations [8].
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Figure 1: Band edge energies of MAPbIs calculated at different
levels of theories (in eV), where asterisks * denote calculations
including spin-orbit interaction [3].



Figure 2: Relaxed lowest-energy structures for FA1_, Cs, Pbls obtained for the 2 x 2 x 2 unit cells out of 10 different random
arrangements of Cst and FA™T cations including a random orientation of FAT molecules.

One particular difficulty in the modelling of these
alloy systems lies in the (random) distribution of
the Cs™ cations in the FA,_,Cs,Pbls supercell. In
case of the hybrid halide perovskites we addition-
ally face the problem of the random orientation of
the FA™ molecules. This leads to the generation
and structural optimisation of a vast amount of dif-
ferent supercells for each chosen = value for the
FA;_.Cs,Pbls alloy system, allowing for the study of
different (random) distributions of Cs™ cations and
orientations of the FA™T molecules. This is exemplary
given in Fig. [2] for smaller 2 x 2 x 2 supercells of
the whole FA;_,Cs,Pbl; alloy system, where only
the lowest energy structures for each x value are
shown. Further analyses will yield information on
the electronic properties, e.g. band structures, and
optical properties, e.g. dielectric functions, of the
whole FA;_,Cs,Pbl; alloy system, respectively.

The results obtained in this project will contribute
to an atomic scale insight into structural and elec-
tronic properties of FA; _,Cs,Pbls, and pave the way
for a subsequent investigation of the defect charac-
teristics.
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