
UG Synthesizer

Synthesizing different types of parallel solvers on a supercomputer to solve now intractable opti-
mization instances

Thorsten Koch, Yuji Shinano, Ambros M.
Gleixner, Technische Universität Berlin/Zuse Insti-
tute Berlin

In Short

• UG Synthesizer (UGS) is a new framework to flexi-
bly realize any combinations of algorithm portfolios
and racing to solve Mixed Integer Linear Programs
(MILPs) on a distributed memory computing envi-
ronment.

• It exploits and extends the seasoned Ubiquity Gen-
erator (UG) framework designed to port power-
ful single-solver MILP algorithms to HPC environ-
ments.

• In order to check its generality, at least one
problem-specific solver should be parallelized.

In previous research we have developed dis-
tributed memory Mixed Integer Linear Programming
(MILP) solvers ParaSCIP [1–3] and ParaXpress [4]
based on Ubiquity Generator (UG) framework [5].
The solvers are successful in terms of solving pre-
viously unsolvable instances (open instances) on
supercomputers. Figure 1 shows the number of
open instances in MIPLIB2010 [6] solved during the
last eight years. The instance set was published
in 2011. In 2012, many instances were solved by
standard MILP solvers, but these monotonously de-
creases by 2017. However, UG kept adding solved
instance rather continuously. The increase in 2015
is due to the update of HLRN II to HLRN III. In 2016,
ParaXpress was developed, and in 2017, two new in-
stances were solved by ParaXpress, but it becomes
clear that also on HPC new algorithmic approaches
are needed to tackle hard instances.

The strategy of composing multiple heuristic algo-
rithms within a single solver that chooses the best
suited one for each input is called algorithm portfolio.
In order to exploit performance variability [6] for MILP
solving, a solver may solve an instance in parallel
with several different configurations of parameters
(including parameter for permutation of columns and
rows of input data). This procedure is called rac-
ing. UGS is a general framework to realize any
combinations of algorithm portfolio and racing on a
distributed memory computing environment. Within
this project, we develop UGS as an MPMD (Multiple-
Program Multiple-Data) program to run stably with
three or more different solver executable files, includ-
ing at least one distributed memory SPMD (Single-
Program Multiple-Data) type MPI program.

Figure 1: Number of open instances in MIPLIB2010 solved during
last six years

The idea to use an improved solution found by
using some external heuristic MILP solver simply for
restarting parallel B&B MILP solver execution is nat-
ural, easy to realize, and promising. With mathemat-
ically supercharged MILP solvers, however, many
challenges arise. At first, finding the improved so-
lution itself is extremely hard in general for hard
MILP instances. It could be improved if the prob-
lem has special structure and the heuristic algorithm
used is to specialized for the problem. In general
MILP case, currently, only strong commercial MILP
solvers could have a chance to improve the incum-
bent solution. Second, even if an improved solution
was obtained, it often cannot be used directly in a
different B&B search because current state-of-the-
art MILP solvers reformulate problem structure in
a preprocessing phase. Therefore, an automatic
transformation procedure is necessary.

All things considered, we need a synthesized sys-
tem that needs to satisfy below:

• Different types of algorithm implementations for
solving MILP problem need to be run in parallel.

• All algorithms run in parallel must be state-of-
the-art, since each of them is expected to con-
tribute to improving the incumbent solution.

• Each algorithm implementation needs to be real-
ized by a separated executable file, since which
algorithms are used depends on problem to be
solved and the parallel solver should be config-
ured at run-time.

• An algorithm implementation could be a pro-
gram which can run on a distributed memory

bem00025



computing environment itself.

The goal of this project is to develop UG Synthe-
sizer (UGS) that allows us to realize the synthesized
system as an MPMD type MPI program. An instan-
tiated distributed memory solver by using UG such
as ParaSCIP and ParaXpress is a SPMD type MPI
program. An MPMD MPI program realized by UGS
can have two levels of distributed memory MPI pro-
grams, i.e., it could contain SPMD type MPI program
inside of the MPMD MPI program. On top of that, we
would like to run multiple SPMD type MPI programs
instantiated by UG with different configurations of
parameters in parallel.

Figure 2 shows the design structure of UGS. UGS
is a software tool kit that contains scripts to gener-
ate run-time environment from a parallel processes
configuration file. The run-time processes on a su-
percomputer composed of a special process ugs
which mediates solution sharing and ugs solvers.
The latter can be several different executable files.
In order to make it possible to communicate between
ugs solvers and ugs, a special MPI communicator is
provided by UGS.

Figure 2: Design structure of UG Synthesizer (UGS)

Though our prime focus, UGS is not limited to
MILP solvers only, but can be used for MINLP solvers
and be extended to more general problem and algo-
rithm classes. In future investigations, one valuable
application of UGS could be block-structured MILPs,
which appear in the context of energy systems mod-
eling such as in our collaborative project BEAM-
ME1. We already have ug[PIPS-SBB, MPI] [7], which
is a branch-and-bound-based solver specialized
for Stochastic MILPs (SMILPs). SMILPs need to
solve extremely large Linear Programming (LP) re-
laxations with special structure called dual block-
angular constraint matrix. Therefore, in ug[PIPS-
SBB, MPI], the LPs are solved on distributed mem-
ory and branch and bound tree search is parallelized
by UG. This means ug[PIPS-SBB, MPI] itself has
two levels of MPI parallel program and it needs to

1http://www.beam-me-projekt.de/

be extended so that it can handle three levels when
using UGS.

WWW
http://ug.zib.de/

More Information

[1] Y. Shinano, T. Achterberg,T. Berthold, S. Heinz,
T. Koch, ParaSCIP – a parallel extension of
SCIP, Christian Bischof, Heinz-Gerd Hegering,
Wolfgang E. Nagel, Gabriel Wittum, eds., Com-
petence in High Performance Computing 2010.
Springer, 135–148 (2012).

[2] Y. Shinano, T. Achterberg,T. Berthold, S. Heinz,
T. Koch, M. Winkler, Solving Hard MIPLIB2003
Problems with ParaSCIP on Supercomputers:
An Update, Parallel & Distributed Processing
Symposium Workshops (IPDPSW), 2014 IEEE
International 1552 – 1561 (2014).

[3] Y. Shinano, T. Achterberg, T. Berthold,
S. Heinz, T. Koch, M. Winkler, Solving Open
MIP Instances with ParaSCIP on Supercom-
puters using up to 80,000 Cores, in 2016 IEEE
International Parallel and Distributed Process-
ing Symposium (IPDPS), IEEE Computer
Society,770–779,(2016).

[4] Y. Shinano, T. Berthold, and S. Heinz, A First
Implementation of ParaXpress: Combining
Internal and External Parallelization to Solve
MIPs on Supercomputers, Springer Interna-
tional Publishing, Cham, 2016, pp. 308–316.

[5] Y. Shinano, S. Heinz, S. Vigerske, M. Winkler,
FiberSCIP – a shared memory parallelization
of SCIP, INFORMS Journal on Computing, 30
11–30, (2018).

[6] T. Koch, T. Achterberg, E. Andersen,
O. Bastert, T. Berthold,R.E. Bixby, E. Danna,
G. Gamrath, A.M. Gleixner, S. Heinz, A. Lodi,
H. Mittelmann, T.K. Ralphs, D. Salvagnin,
D.E. Steffy, K. Wolter, MIPLIB 2010 – Mixed
Integer Programming Library version 5, Mathe-
matical Programming Computation, 3 103–163,
(2011).

[7] L.-M. G. O. Munguía, D. Rajan, and Y. Shinano,
Parallel pips-sbb: Mulit-level parallelism for
stochastic mixed-integer programs, Tech. Rep.
17-58, ZIB, Takustr.7, 14195 Berlin, 2017.

Project Partners
Oak Ride National Laboratory, Lawrence Livermore
National Laboratory, The Institute of Statistical Math-
ematics, Georgia Tech.

Funding

Forschungscampus Modal

bem00025

http://www.beam-me-projekt.de/
http://ug.zib.de/

	 Synthesizing different types of parallel solvers on a supercomputer to solve now intractable optimization instances

