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« Graphs are widely used in the design and imple-
mentation of many methods in computer science,
including numerical simulations. We research fast
algorithms for two different categories of graph
problems.

* We extend graph partitioning and process map-
ping tools that accelerate existing applications in
scientific computing by providing better load bal-
ancing and by minimizing communication costs.

+ We develop new parallel graph mining algorithms
for HPC systems that extract knowledge from
graphs arising in various application domains.

In computer science and mathematics, graphs (or
corresponding sparse matrices) are a ubiquituous
tool to express relationships between pairs of enti-
ties. Graphs arise both in mathematical codes (such
as iterative solvers for sparse linear systems em-
ployed in numerical simulations, see Figure[f) and
in domain-specific applications such as complex net-
works (e.g., computer networks or protein-protein
interactions) or road networks. In this project, we
develop and evaluate new graph algorithms for HPC
clusters. Our objective is twofold: (i) we extend tools
for graph partitioning and process mapping that ac-
celerate existing HPC applications (e. g., numerical
simulations that rely on sparse linear solvers) by
improved load balancing capabilities and resource
utilization on homogeneous and heterogeneous sys-
tems, and (ii) we develop new HPC-based graph
mining tools that can be applied by domain scien-
tists to extract domain-specific knowledge from large
complex networks.

Graph Partitioning and Mapping

Solving large problem instances on HPC systems
(e.g., solving sparse systems of linear equations in
numerical simulations) often requires the division of
the input into small parts such that each part can be
distributed to a different processing unit (PU) such
as a CPU or a GPU. The amount of communication

Figure 1: Simulation mesh (i. e., communication graph) of an
airfoil simulation.

between PUs depends on the quality of this distribu-
tion. Since communication between PUs is orders
of magnitude slower than access to local data, mini-
mizing communication is crucial for the efficiency of
an HPC application.

A common strategy for computing a good distri-
bution is to model the application’s communication
pattern as a graph. In the case of a numerical simu-
lation, the communication graph often corresponds
directly to the problem’s simulation mesh (see Fig-
ure [1] for an example). On this graph, the graph
partitioning problem is solved. The most common
formulation of this problem asks for a division of the
graph’s vertex set V into k blocks (i. e., pairwise dis-
joint subsets) such that all blocks are no larger than

(1+e)- Plkﬂ (for small € > 0), while some objec-

tive function modeling the communication volume is
minimized. Afterwards, process mapping is applied,
which maps each block of the partition to exactly one
PU. Traditionally, the edge cut (i. e., the total number
of graph edges having their incident vertices in differ-
ent blocks) is used as a proxy for the communication
volume. For a survey on the subject see [3].

Established combinatorial tools for general-
purpose graph partitioning typically yield a high qual-
ity in terms of the edge cut. However, they do
not scale to large numbers of PUs and require a
large amount of extra memory (in addition to the
memory required to store the input graph). Pre-
vious work often saw an increase in running time
when moving beyond a few hundred PUs for such
approaches [2]. Thus, for large-scale simulations the
research community has moved to more scalable
geometric methods, e. g., space-filling curves or re-
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Figure 2: Partitions of an ocean mesh by three different algorithms: space-filling curves, multi-section and our balanced k-means in
Geographer. In this example, balanced k-means leads to small boundaries (i. e., low edge cut and communication volume) between

blocks (= colored regions).

cursive multi-section. While geometric methods are
often much faster and scale better to large numbers
of PUs than purely combinatorial ones, their parti-
tioning quality is typically worse, leading to a higher
running time of the targeted application.

In a previous BMBF project, we developed a bal-
anced version of the k-means algorithm for direct k-
way partitioning of geometric point sets correspond-
ing to simulation meshes. Our algorithm and its
implementation are called Geographer (Geometry-
based graph partitioner [1]). Geographer scales to
large input graphs and to large numbers of PUs. For
example, in previous experiments on 16384 PUs,
a mesh with 2 billion vertices can be partitioned
into 16384 blocks within a few seconds. The parti-
tions derived this way have good global shapes thus,
resulting in a low edge cut compared to other geo-
metric approaches (see Figure [2). In this project, we
extend the balanced k-means approach of Geogra-
pher in multiple ways: (i) we want to support repar-
titioning of the graph at runtime to take changes in
communication patterns into account, (ii) to be able
to handle communication graphs of heterogeneous
HPC systems, we want to support multiple balance
constraints (e. g., to balance CPU and GPU load at
the same time) and (iii) we want to integrate pro-
cess mapping into the balanced k-means procedure
instead of applying it in a postprocessing step.

Graph Mining

In graph mining, typical tasks ask to extract domain-
specific knowledge (or information) from graphs. Ex-
emplary graph mining tasks include identifying cen-
tral (i.e., important) vertices of the graph, group-
ing similar vertices into clusters or predicting new
relations between existing vertices. For a broad
overview of graph mining applications, see Ref. [4].
Many graph mining algorithms are computationally
expensive and require approximation and parallelism
to be tackled in reasonable time. In the ongoing
DFG project FINCA, we developed an approxima-
tion algorithm for the popular betweenness centrality

measure that runs on HPC systems. In contrast to
earlier codes, our implementation can often handle
graphs with billions of edges in minutes on 384 PUs.
In this project, we want to extend the scalability of
our algorithm to larger numbers of PUs. Further-
more, our goal is to investigate graph embedding
algorithms that embed graphs (which come without
associated coordinates) into Euclidean spaces. This
method can be used to make graphs accessible to
other data mining and machine learning algorithms
that assume the existance of feature vectors. Em-
beddings will also enable the use of Geographer’s
geometric techniques for graphs that do not a priori
have associated coordinates.

[https://bit.ly/hub-macsy|
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