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In Short

• MAP-SVP is a massively parallel solver for Short-
est Vector Problem (SVP).

• Our experimental implemenation of MAP-SVP is
the world first practical asynchronous distributed-
memory solver of SVP.

• The experimental implemenation of MAP-SVP
achieved new records for 104, 111, 121 and 127
dimensions in SVP Challenge.

A lattice is a discrete subgroup of the Euclidean
space, Rn. A lattice L of dimension n is spanned
by a basis B consisting of linearly independent vec-
tors b1, . . . ,bn ∈ Rn, and any vector in L can be
represented as a linear combination of the bis with
integer coefficients. In the past few years, lattices
have attracted considerable interest in cryptogra-
phy. In particular, with the recent development of
quantum computers, since 2015, the US National
Institute of Standards and Technology (NIST) started
developing new standards for post-quantum cryp-
tography (PQC) and called for proposals to prepare
information security systems that can resist quan-
tum computers [1]. (cf., The most popular crypto-
graphic systems, such as RSA, DSA, and ECDSA,
could be broken by Shor’s algorithms with the use
of large-scale quantum computers.) In 2019, NIST
allowed 26 proposals for the second round of the
NIST PQC Standardization Process, among which
12 were based on lattices.

The most famous computational problem in lat-
tices is the shortest vector problem (SVP) that asks
us to find a non-zero shortest vector in a given lattice.
Its hardness ensures the security of lattice-based
cryptography. The Darmstadt SVP Challenge [2] is
a recognized venue for testing algorithms for solving
SVPs; it publicly lists sample bases of dimensions
from 40 up to 200. It is a contest of finding shorter
vectors, not necessarily the shortest one. Specif-
ically, any non-zero lattice vector whose length is
shorter than (1.05 · GH(L)) can be submitted for
each lattice L, where GH(L) is the expectation of
the length of the non-zero shortest vector in L, which
is given by

GH(L) := ν
− 1

n
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√

n

2πevol(L) 1
n , (0.1)

where νn denotes the volume of the unit ball in Rn.
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Figure 1: Overview of our SVP solver

There are two main algorithms to find a non-zero
shortest lattice vector; Sieve and ENUM. Both of the
algorithms perform an exhaustive search of all the
short lattice vectors, whose number is exponential
in the lattice dimension. In the SVP Challenge, most
of the high-dimensional records have been achieved
by a variant of the sieve algorithm. The sieve algo-
rithm searches for the shortest vector by repeatedly
storing short differences between the short lattice
vectors. A high-dimensional SVP instance requires
numerous vectors to be stocked. Specifically, it re-
quires a memory that is exponential in the dimen-
sion of the input lattice. Hence, it is highly diffi-
cult to satisfy memory requirements for solving high-
dimensional SVPs using the sieve algorithm, even
by increasing the number of processes. In contrast,
ENUM is asymptotically slower than the sieve algo-
rithm, but its space-complexity is polynomial in the
lattice dimension. Therefore, ENUM is more suited
for solving SVP in higher dimensions. In particu-
lar, it is essential for cryptanalysis of lattice-based
cryptography, since it uses very high dimensions
such as 256 and 512 for cryptographic security. In
this project, we develop a new SVP solver called
the Massively Parallel Solver for SVP (MAP-SVP),
which is suitable for large-scale parallelization.

In our paper[3], we demonstrated the scalability
and performance of an experimental implementation
of MAP-SVP through numerical experiments on SVP
instances of up to 127 dimensions. The MAP-SVP is
the first practical asynchronous distributed-memory
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solver of SVP. We succeed in employing 103, 680
cores in our experiment. To the best of our knowl-
edge, this is the largest massive-scale experiment
for solving SVP. In MAP-SVP, multiple processes
independently execute two SVP solving algorithms,
ENUM and DeepBKZ, which have a small mem-
ory footprint. The memory complexity of each pro-
cess is O(n2) with respect to dimension n of SVP,
and in our numerical experiments, the memory us-
age is less than 0.013 GB per process for even a
155-dimensional SVP instance. Therefore, we can
execute the MAP-SVP for high-dimensional SVPs
and obtain the shortest vector. The experimental
MAP-SVP is implemented by the specialized Ubiq-
uity Generator (UG) framework [4] with the paral-
lelDispatch function. The UG is a generic frame-
work to parallelize branch-and-bound based solvers
and has achieved large-scale MPI parallelism with
80,000 cores [5]. Owing to parallelDispatch of the
UG, we can stably run a massive number of pro-
cesses sharing information asynchronously with low
communication overhead. In addition, we extend
parallelDispatch by implementing the vector pooling
feature, which allows each process to receive short
vectors found by other processes as needed. We
tackled instances of the SVP Challenge using our
experimental parallel application and achieved new
records for 104, 111, 121 and 127 dimensions.

The overview of the MAP-SVP for a two-
dimensional SVP is shown in Fig. 1. Our system
is composed of a management process, called as
LOADCOORDINATOR (abbreviated to LC throughout
this document), and multiple SOLVERs. We provide a
lattice basis B as an SVP instance to the LC, which
then randomizes and distributes it to each SOLVER.
In Fig. 1, the solid arrows, points, and circles repre-
sent the lattice basis, lattice, and depth-first search
space of ENUM, respectively. The radius of the cir-
cle is the length of the shortest vector in the current
bases. Each SOLVER executes the DeepBKZ and
ENUM algorithms while sharing short vectors via
the vector pool managed by the LC. The DeepBKZ
algorithm modifies the basis vector so that each
vector is shortened. We apply DeepBKZ as a pre-
processing for ENUM, to reduce its search space.
We can set the radius of the search space of each
SOLVER as that of the smallest solver, as depicted
by the dashed red circle for SOLVER B in Fig. 1.
This operation does not impair the optimality of the
entire system. Subsequently, each SOLVER uses a
technique called extreme pruning, to further reduce
the search space in ENUM. Because the input lat-
tice basis is randomized, the reduced search spaces
for all the SOLVERs are also fundamentally different.
In Fig. 1, the gray area and the dashed red arrow
represent the reduced search space and the short-
est vector, respectively. The MAP-SVP prunes the

search tree of each SOLVER according to the theo-
retically computed probability of the shortest vector
lying within a search sub-tree. Therefore, as the
number of SOLVERs increases, a more aggressive
pruning can be applied to reduce the computation
time of each SOLVER.

The UG framework is a software framework to par-
allelize branch-and-bound based solvers. However,
the algorithm used to solve SVP in this project is
not branch-and-bound. This means that the ex-
perimental implementation uses work-arounds. For
a clean implementation, the UG framework itself
needs to be refactored so that it can handle non
branch-and-bound based solvers. We call the refac-
tored UG, the generalized UG. Here, the branch-and-
based is separated within the framework. Based on
the knowledge obtained by the experimental imple-
mentation, we will redesign MAP-SVP and build a
new solver on top of the generalized UG.
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