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In Short

• The goal of the project is to solve previously un-
solved challenging large scale Quadratic Assing-
ment Problem (QAP) instances from QAPLIB.

For a positive integer n, we let N = {1, . . . , n}
represent a set of locations and also a set of facilities.
Given n × n symmetric matrices A = [aik], B =
[bjℓ] and an n × n matrix C = [cij ], the quadratic
assignment problem (QAP) is stated as

min
π

n∑
i∈N

n∑
k∈N

aikbπ(i),π(k) +
n∑

i∈N

ci,π(i), (0.1)

where aik denotes the flow between facilities i and
k, bjℓ is the distance between locations j and ℓ, cij

the fixed cost of assigning facility i to location j, and
(π(1), . . . , π(n)) a permutation of 1, . . . , n such that
π(i) = j if facility i is assigned to location j.

The QAP is one of the most renowned clas-
sical combinatorial optimization problems. The
QAPLIB [3], first published in 1991, aimed to pro-
vide a unified testbed for the QAP that is widely
accessible to the scientific community. It has been
continuously updated to stimulate further research
into this critical problem class. Consequently, the
QAP has been extensively studied over the last three
decades, both theoretically and computationally.

Solving QAP instances larger than size 35 re-
mains a significant challenge in practice, despite the
QAP being known as NP-hard theoretically. Various
heuristic methods for the QAP, such as tabu search,
genetic algorithms, and simulated annealing, have
been developed. These methods frequently achieve
near-optimal solutions, which often coincide with the
exact optimal solutions. However, the exactness of
these solutions is not guaranteed in general.

Most existing methods for finding the exact solu-
tions of QAP are designed within the branch-and-
bound (B&B) algorithmic framework [1,4]. As the
name suggests, branching and lower bounding con-
stitute the core procedures of this method.

Lower bounding procedures incorporated in the
branch-and-bound method plays a crucial role. They
have been developed for decades; Gilmore-Lawler
bound, Reformulation-Linearization Technique, spec-
tral methods, semidefinite programming (SDP) re-
laxations. To apply a strong lower bounding proce-
dure, we employ the Lagrangian doubly nonnegative

(DNN) relaxation and the Newton-bracketing method.
Though, DNN relaxation is known to be stronger
than SDP relaxation, its highly degenerate nature
makes difficult to solve by well-known methods as
primal-dual interior point methods.

First two of the methods are SDPNAL+ [12] (a
majorized semismooth Newton-CG augmented La-
grangian method for semidefinite programming with
nonnegative constraints) and BBCPOP [5] (a bi-
section and projection method for Binary, Box and
Complementary constrained Polynomial Optimiza-
tion Problems). Some numerical results on these
two methods applied to DNN relaxation of QAP in-
stances with dimensions n = 15 to 50 from QAPLIB
were reported in [5], where BBCPOP attained tighter
lower bounds for many of instances with dimen-
sions 30 to 50 in less execution time. The third
method is an alternating direction method of mul-
tipliers (ADMM) proposed by Oliveira et al. [7] in
combination with facial reduction for robustness.
The fourth method is the Newton-bracketing (NB)
method [6], which was recently proposed to en-
hance the lower bounds. The NB method employs
the Accelerated Proximal Gradient (APG) method
internally, enabling stable solutions for large-scale
DNN relaxation. It theoretically possesses the de-
sirable property as quadratic convergence. New
and improved lower bounds for the unknown mini-
mum values of larger scale QAP instances, includ-
ing tai100a and tai100b, were computed using the
Newton-bracketing method; see QAPLIB [3].

To solve large scale QAPs, massive paralellization
is crucial. We adapted UG, generic framework to
parallelize branch-and-bound based solvers. It has
achieved large-scale MPI parallelism with 80,000
cores [8]. We have integerated our QAP solver with
UG to realize a large-scale, parallelized solver.

The main motivation of our project is to challenge
larger scale QAP instances from QAPLIB [3] that
have not been solved yet. We implement the NB
method [6] combined with the B&B method in the
specialized Ubiquity Generator (UG) framework [11]
to find the exact solutions of large scale QAP in-
stances. See Sections 2, 3, 4, 5 in [2] for precise
and detailed description about the proposed algo-
rithms.

We solved challenging large scale instances,
nug30, tai30a, tai35b, tai40b and sko42 on the
ISM (Institute of Statistical Mathematics) supercom-
puter HPE SGI 8600, which is a liquid cooled, tray-
based, high-density clustered computer system. The
ISM supercomputer has 384 computing nodes and
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each node has two Intel Xeon Gold 6154 3.0GHz
CPUs (36 cores) and 384GB of memory. All of
the instances were solved as a single job. Table
1 shows the computational results. Note that tai30a
and sko42 were solved to the optimality for the first
time, which had remained unsolved for more than
20 years.

Table 1: Numerical results on challenging large scale QAP in-
stances.

QAP No. of nodes Total execution No. of CPU
instance Opt.val generated time(sec) in para. cores used
nug30 6,124 26,181 3.14e3 1,728
tai30a 1,818,146 34,000,579 5.81e5 1,728
tai35b 283,315,445 2,620,547 2.49e5 1,728
tai40b 637,250,948 278,465 1.05e5 1,728
sko42 15,812 6,019,419 5.12e5 5,184

We address the recent advancements in solving
tai50b, noting a significant increase in the lower
bounds. With the current solution process, dedi-
cating more time to the problem will likely reach
to obtain the exact solution. Figure 1 shows the
current solution process of tai50b. Our approach
emphasizes the importance of continued efforts and
resource allocation to fully exploit the potential for
solving tai50b.

Figure 1: solution process of tai50b

The goal of this project is to (further) develop
the parallel QAP solver based UG to handle over
100,000 cores to solve notoriously hard QAP in-
stances to the optimality. We believe that this project
would serve as a flagship for the efficient solution
of N P-hard combinatorial optimization problems by
using supercomputers.
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https://www.zib.de/members/shinano,
https://ug.zib.de/
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