
Generalized UG

Generalization of Ubiquity Generator Framework to handle non-branch-and-bound based solvers
and could run on more than a million CPU cores

Yuji Shinano, Thorsten Koch, Zuse Institute Berlin

In Short

• Develop the generalized UG, a single unified
framework to parallelize both branch-and-bound
and non-branch-and-bound based solvers.

• The generalized UG can customize its dynamic
load balancing algorithm with respect to the solver
used.

• The ability of run parallel solvers instantiated by
the generalized UG framework on more than a
million CPU cores.

Optimization solvers have been studied and de-
veloped in the mathematical optimization research
community and parallel computing one. For NP-hard
problem solvers, the solvers developed by mathe-
matical optimization community are superior in solv-
ing hard instances to those developed by parallel
computing community. Solvers developed by the
parallel computing community can only expect at
most linear speed-up from parallelization, which is
not enough to solve challenging NP-hard problems.
Mathematics is instrumental in advancing our abil-
ity to solve this class of problems. A fundamental
question is if the combination of sophisticated math-
ematical techniques and a huge amount of cores,
like over a million CPU cores, could help to solve
hard optimisation problems. In order to answer this
question we must develop scalable parallel solvers
with mathematically supercharged algorithms.

There are a few successful results of previously
unsolved instances being solved by using large scale
computing environments. ParaSCIP has solved nu-
merous open instances of mixed integer program-
ing problems (MIP)[1] and UG [SCIP-Jack, MPI]
has solved many open instances of Steiner tree
problems (STP)[3]. These successful results have
been made possible by the parallelization software
framework Ubiquity Generator (UG)[5], which par-
allelizes existing state-of-the-art branch-and-bound
based solvers. Basic concept of the UG framework
is to exploit powerful performance of state-of-the-art
"base solvers", such as SCIP, Xpress, etc., without
the need for base solver parallelization. The base
solvers and communication libraries are then ab-
stracted within UG.

Recently, an experimental implementation for find-
ing shortest lattice vectors based on UG has been
developed. Lattice-based cryptography has received
attention as a next-generation encryption technique,
because it is believed to be secure against attacks
by classical and quantum computers. Its essential
security depends on the hardness of solving shortest
vector problems (SVP). The parallelized algorithms
for solving SVP based on UG is not branch-and-
bound based. In spite of this fact, the experimental
implementation successfully parallelized the algo-
rithm and improved record for several dimensions
of the problems in SVP challenges by using over
100,000 cores [4].

This project’s ultimate goal is to study efficient
ways to use over a million CPU cores to solve hard
optimization problems. In this project, we will deal
with a wide range of NP-hard problems, which are
solved using branch-and-bound, including mixed in-
teger linear and non-linear programming problems,
and classical combinatorial optimization problems,
such as the traveling salesman problem and the
quadratic assignment problem. Further, a major in-
novation of this proposal is the development of a
software framework to parallelize non-branch-and-
bound based solvers for problems such as the SVP.

The software framework UG is known as one of
the most successful software tools in order to paral-
lelize solvers that are mathematically supercharged
branch-and-bound based algorithms. Its paralleliza-
tion paradigm is supervisor-worker, in which a sin-
gle supervisor controller performs load balancing by
sending and receiving small numbers of messages
on demand to workers. In UG, the worker is an
existing solver and well defined message passing
protocols for branch-and-bound algorithms between
the solvers are defined. UG was first applied to paral-
lelize the MIP solver SCIP. More recently, the frame-
work has been extended to parallelize the commer-
cial MIP solver Xpress[2], which is a multi-threaded
solver.

From a software engineering point of view, UG’s
approach has the inherent benefit of high functional
cohesion. Additionally, from a parallelization point
of view it has inherent benefits about locality, since
it uses an existing solver. For mathematicians, this
approach also has benefits, since algorithm design-
ers need not be concerned about parallelization
and can focus on more mathematical algorithmic
improvements. A key feature of UG is a well defined
message passing protocol of load balancing among

bem00052



Figure 1: Processes structure and abstractions of code

branch-and-bound based solvers. In order to be-
come more efficient, UG needs to have a feature so
that users can define the message passing protocol
depending on the underlying solver. Addressing this
requirement is a major task of this proposed project.
When used for non branch-and-bound based solvers,
the message passing protocol needs to be devel-
oped from scratch.

In the first phase of this project we will re-design
UG so it enables users to design message passing
protocols depending on the used solver. This flexi-
bility will allow users to design parallel solvers shar-
ing user defined information by message passing
that is solver specific. We call the re-designed UG
generalized UG. The second phase of this project
is dedicated to re-implementing solvers currently
parallelized using UG to use the generalized UG
framework. In the third phase, we will improve the
performance on each solver by adding new message
passing protocols depending on which solver has
been used and what kind of information should be
shared.

Two types of processes exist when running the
parallelized solver by UG on distributed memory
environment. First, there is a single LOADCOOR-
DINATOR, which makes all decisions concerning the
dynamic load balancing and distributes subproblems
(or some task) of a target problem to be solved. Sec-
ond, all other processes are SOLVERs that solve
the distributed subproblem (or do some task) by re-
garding it as root node in case of branch-and-bound.
Figure 1 shows the processes structures. As we
aforementioned, base solvers and communication li-
braries abstracted in UG. In the generalized UG, the
LOADCOORDINATOR is also abstracted so that dy-
namic load balancing mechanism can be customized
depending on base solver used.

Even if the base solver used is a single threaded
solver, the generalized UG can use it as a thread
within an MPI process. In this case, each solver runs
as a thread within an MPI process, and thread id zero
solver receives messages from LOADCOORDINATOR
and it redirects the messages to the target threads
as shown in Figure 2. Current UG can handle up to
100,000 MPI processes [4]. Therefore, the threaded

Figure 2: Redirect messages by local communicator for threaded
solver version of UG

solver version of massively parallel solvers can be
potentially handle over a million CPU cores.

WWW

https://ug.zib.de/

More Information

[1] Y. Shinano, T. Achterberg, T. Berthold,
S. Heinz, T. Koch, and M. Winkler, Solving
open MIP instances with ParaSCIP on super-
computers using up to 80,000 cores, in 2016
IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Los Alami-
tos, CA, USA, 2016, IEEE Computer Society,
pp. 770–779.

[2] Y. Shinano, T. Berthold, and S. Heinz, ParaX-
press: an experimental extension of the FICO
Xpress-Optimizer to solve hard MIPs on su-
percomputers, Optimization Methods and
Software, 33 (2018), pp. 530–539.

[3] Y. Shinano, D. Rehfeldt, and T. Koch, Building
optimal steiner trees on supercomputers by
using up to 43,000 cores, in Integration of
Constraint Programming, Artificial Intelligence,
and Operations Research, L.-M. Rousseau
and K. Stergiou, eds., Cham, 2019, Springer
International Publishing, pp. 529–539.

[4] N. Tateiwa, Y. Shinano, S. Nakamura,
A. Yoshida, M. Yasuda, S. Kaji, and K. Fuji-
sawa, Massive parallelization for finding short-
est lattice vectors based on ubiquity generator
framework, in 2020 SC20: International Con-
ference for High Performance Computing,
Networking, Storage and Analysis (SC), Los
Alamitos, CA, USA, nov 2020, IEEE Computer
Society, pp. 834–848.

[5] UG: Ubiquity Generator framework. http:
//ug.zib.de/.

Funding

BMBF Research Campus MODAL

bem00052

https://ug.zib.de/
http://ug.zib.de/
http://ug.zib.de/

	Generalization of Ubiquity Generator Framework to handle non-branch-and-bound based solvers and could run on more than a million CPU cores

