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In Short

• Development of a massively parallel traveling
salseman problem(TSP) solver.

• Solve previously unsolved challenging TSP in-
stances.

Given an undirected graph G = (V, E) with non-
negative integer edge cost c(u, v) for each edge
u, v ∈ E, the Traveling Salesman Problem (TSP)
is to find a hamiltonian cycle of G with minimum cost.
The TSP is a classic N P-hard problem [5] and one
of the most studied problems in combinatorial opti-
mization. This project aims to develop a massively
parallel solver for TSP based on the Ubiquity Gen-
erator (UG) framework [13], which makes Concorde
running on supercomputers to solve extremely hard
instances.

The well-known benchmark for the TSP is the
TSPLIB [7,12], which was first published in 1991
and all of the instances were solved to optimaliy
in 2007 due to enormous algorithmic progress. We
have developed the Ubiquity Generator (UG ) Frame-
work[13], which is a software framework to paral-
lelize branch-and-bound based solvers. There are
massively parallel branch-and-bound system, such
as PEBBL [4], ParSSSE [11] and ALPS [14]. How-
ever, only a handful of publications [2,8,10] address
effective parallelization of state-of-the-art solvers ca-
pable of running on modern supercomputers. The
essential design concept of UG is to parallelize the
state-of-the-art solvers on supercomputers. Para-
SCIP [9] is the role model for a massively parallelized
Mixed Integer Programming (MIP) solver. It is well-
known in the discrete optimization community that
the most powerful TSP solver is Concorde [3], in
which the most sophisticated Linear Programming
(LP) based branch-and-cut algorithm is implemented
specialized for TSP. Concorde includes cutting plane
algorithms, branching rules, etc. specialized for TSP
and also data structures are specialized for TSP.
There is a book “The Traveling Salesman Problem:
A Computational Study”(606 pages) [1] which de-
scribes them. The Concorde source code is publicly
available. Its version date is Dec 19, 2003, but still
it is the strongest TSP solver to obtain optimal solu-
tions. William J. Cook has kept improving the code,
and we can use the latest version of Concorde in
this project. In this project, we clarify how much
we could accelerate the solution process by using

supercomputers and provide optimal solutions for
challenging, previously unsolved TSP instances.

Although the algorithmic components are similar
to a MIP solver, Concorde implementation is quite
different from state-of-the-art MIP solvers. For exam-
ple, the variables part of an optimal solution are gen-
erated on the fly and each branch-and-bound node
is saved as a file that represents an LP-relaxation of
the node, and each branch-and-bound node compu-
tation time is very long to obtain good lower bound
and to select a good branching variable etc. and their
execution can be parallelized. From a parallelization
point of view, Concorde itself is a parallel solver. In
order to run parallelized Concorde by UG on super-
computers, it should work with original parallelization
code inside of Concorde.

We developed an experimental parallel TSP solver
based on UG to check if it can be realized or not.
Throughout this document, we call it ParaConcorde.
Unfortunately, the UG framework itself had to be
modified, but it was realized by adding several call-
back functions to Concorde. We conducted com-
putational experiments to solve the Mona Lisa TSP
challenge instance (100,000-city instance) [6] on the
ISM (Institute of Statistical Mathematics) supercom-
puter HPE SGI 8600, which is a liquid cooled, tray-
based, high-density clustered computer system. The
ISM supercomputer has 384 computing nodes and
each node has two Intel Xeon Gold 6154 3.0GHz
CPUs (36 cores) and 384GB of memory. On the
ISM supercomputer, we can submit a job with a time
limit of one week. For racing, we used 1721 racing
solvers, that is, 1721 random seeds are tested to
find the winner solver and 5183 solvers used for the
following jobs.

Figure 1 shows how the gap between upper bound
and lower bound changed during computation. Dur-
ing racing, each color line shows each solver’s gap
and the red bold line shows the winner’s gap. Dif-
ferent from parallel MIP solvers based on UG, Para-
Concorde could continue racing ramp-up from the
checkpoints, since Concorde itself has mechanism
to check-pointing and restarting and ParaConcorde
extended the feature. The racing termination crite-
rion is that the winner has more than 20 open nodes.
The racing works well to select the most promising
search tree, but it takes quite long to terminate the
racing even when the termination criteria was that
only 20 open nodes were generated. However, once
the winner was selected, the single tree search par-
allelization makes a big search tree relatively fast
compared to the racing phase.
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Figure 1: Solving the Mona Lisa TSP (100,000-city instance) by
using ParaConcorde with racing ramp-up

Concorde can offer internal parallelization fea-
tures, but these are based on UNIX socket based
communication for coordination, and data exchange
between workers via the file system. We have ported
these to directly use MPI send/recv operations, to
enable full use of the High-Speed Networks (HSN).
This native MPI version of Concorde will allow us to
integrate it with UG in an even better way: The most
recent version of UG is able to coordinate multiple
distributed solvers, each in its own MPI-GROUP. We
plan to extend this capability to allow Concorde to
make use of a dynamic number of additional ranks
for internal parallelization, and UG can accommo-
date that via a dynamic MPI Group modification
mechanism to re-balance the number of ranks per
group of all the Concorde instance running at a given
time. Since Concorde contains a number of tunable
parameters, and also employs randomization for tie
breaking, running multiple Concorde solvers with
differing computational resources assigned to them
appears very appealing. It can also be seen as build-
ing an infrastructure to simplify such dynamic MPI
group rebalancing for other applications, a critically
missing toolset to increase the efficiency of large-
scale MPI applications where computational load
shifts during the lifetime of a program.

We have had a series of HLRN projects related
to the UG framework. The latest one is “Gener-
alization of Ubiquity Generator Framework to han-
dle non-branch-and-bound based solvers and could
run on more than a million CPU cores’(bem00052)”,
which aims to build a unified and generalized soft-
ware framework to develop a massively parallel
solver that exploits state-of-the-art search-based
algorithms to solve optimization problems. In the
project bem00052, we redesign and refactor the
UG Framework to enable easier use on a broader
range of optimization applications on more cores.
As a consequence, in this project, we can develop

a much more customized ParaConcorde, which
extends Concorde’s check-pointing and restarting
mechanism and combines external parallelization of
UG and internal parallelization of Concorde.

WWW

https://www.zib.de/members/shinano,
https://www.math.uwaterloo.ca/~bico/,
https://https://www.math.uwaterloo.ca/tsp/
concorde.html,
https://ug.zib.de/
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