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In Short

• POEM is a novel massively parallel solver for
Shortest Vector Problem (SVP) .

• POEM is a asynchronous distributed-memory
solver, which uses powerful mathematical opti-
mization technology.

A (full-rank) lattice of dimension n is the set of all
integral linear combinations

L = L(b1, . . . , bn) :=
{

n∑
i=1

xibi : x1, . . . , xn ∈ Z

}
,

where b1, . . . , bn are n linearly independent vectors
in Rn for a positive integer n. The set of the n vectors
{b1, . . . , bn} is called a basis of L. When another
set of vectors {c1, . . . , cn} spans the same lattice
L, it is also called a basis of L. Furthermore, L(B)
denotes the lattice spanned by the row vectors of an
invertible matrix B. The n × n matrix B is called a
basis matrix of L. Two matrices B and C span the
same lattice if and only if there exists a unimodular
matrix T satisfying C = TB. (An integral square
matrix is called unimodular if its determinant equals
±1.) Given a basis matrix B of L, the volume of L is
defined as vol(L) := |det(B)|, which is independent
of the choice of basis matrices.

Lattice problems are algorithmic problems that in-
volve lattices. Among lattice problems, the following
is of fundamental importance:

Definition 1 (Shortest Vector Problem (SVP)). Find
the shortest non-zero vector with respect to the ℓ2-
norm in the lattice L(B), given a basis matrix B.

SVP is a discrete optimization problem for finding
xi’s in () and is shown to be NP-hard under random-
ized reductions [1]. (That is, there exists a probabilis-
tic Turing-machine that reduces any problem in NP
to SVP instances in polynomial-time.) Note that the
shortest vectors are not unique, and SVP asks to
find one of them. The length of the shortest non-zero
vector in L is denoted by λ1(L). SVP is the problem
of finding a lattice vector s ∈ L with ∥s∥ = λ1(L). It
should be emphasized that there is no known NP
algorithm to check if ∥v∥ = λ1(L) for a given v ∈ L.
Therefore, we rely on Gaussian Heuristic, which as-
sumes that the number of vectors in L ∩ S is roughly
equal to vol(S)/vol(L) for a measurable set S in Rn.

By taking S to be the ball of radius λ1(L) centered
at the origin 0 in Rn, the Gaussian Heuristic leads
to an estimation of λ1(L) as

λ1(L) ≈
(

vol(L)
ωn

)1/n

,

where ωn denotes the volume of the n-dimensional
unit ball. By Stirling’s formula, we have ωn ≈( 2πe

n

)n/2 as n → ∞, and define

GH(L) :=
√

n

2πe
vol(L)1/n. (0.1)

Then, λ1(L) ≈ GH(L) holds for random lattices L in
high dimensions n ≥ 40. (Gaussian Heuristic does
not hold in low dimensions.) For a vector v ∈ L,
the value ∥v∥/GH(L) is called the approximation
factor of v. Similarly, for a basis matrix B, the value
min1≤i≤n ∥bi∥/GH(L) is called the approximation
factor of B. They are evaluation metrics for the lattice
vector and the basis. Based on this observation, an
approximate variant of SVP is defined:

Definition 2 (Hermite Shortest Vector Problem
(HSVP)). Given a basis matrix B and an approx-
imation factor γ > 0, find a non-zero vector v ∈ L(B)
such that ∥v∥ ≤ γ · vol(L(B))1/n.

Another important lattice problem is:

Definition 3 (Closest Vector Problem (CVP)). Given
a basis of a lattice L and a target vector t, find a
vector in L that is closest to t.

CVP is a generalization of SVP because we can
easily convert an instance of SVP to one of CVP. This
implies that CVP is at least as hard as SVP. From a
practical point of view, however, both problems are
considered equally hard due to Kannan’s embedding
technique that can transform CVP into SVP.

Lattice problems are believed to be computation-
ally hard with both classical and quantum algorithms
and have been used to construct various cryptosys-
tems, including post-quantum cryptography. There-
fore, developing a framework for lattice problems is
an important task both in large-scale optimization
and cryptanalysis. More specifically, the security
of many cryptosystems is based on the hardness
of an approximate variant of SVP. Lattice problem
solvers have been extensively tested at the Darm-
stadt SVP challenge [2], which asks to find a lattice
vector shorter than 1.05 times the expected length
of a non-zero shortest lattice vector.
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There are three basic families of lattice algorithms
that have been developed to solve practical lattice
problems: basis reduction, enumeration (ENUM),
and sieve. These algorithms have advantages and
disadvantages, and there is no single definite al-
gorithm for lattice problems. Therefore, practical
lattice-problem solvers generally rely on two or more
algorithms. G6K [3] implements a variety of basis
reduction and sieve algorithms, and it is considered
the state-of-the-art SVP solver. G6K is equipped
with both CPU and GPU highly parallelized imple-
mentations, but it runs only on a single machine.
Furthermore, the memory requirement is exponen-
tial with respect to the dimension of the lattice, which
is inevitable for sieve algorithms. On the other
hand, MAP-SVP [4] is based on basis reduction
and ENUM, which showed efficient scalability above
100, 000 MPI processes.

There are two main obstacles in developing a
large-scale multi-paradigm solver: the need for an ef-
ficient high-level information-sharing scheme across
different algorithms, and an adaptive task selection
and distribution strategy for hundreds of thousands
of processes. To provide solutions to overcome
these obstacles, by exploiting the mathematical prop-
erties of lattice, a clever vector pooling scheme is in-
troduced to minimize the amount of information com-
municated among processes, a flexible framework
to make various algorithms work cooperatively on a
large-scale distributed computing platform, named
CMAP-LAP(Configurable Massively Parallel Solver
for Lattice Problems) [5], has been developed. By
extending the well-recognized Ubiquity Generator
(UG) framework [6] for Branch-and-Bound (B&B) al-
gorithms, CMAP-LAP was built as a solid backbone
to manage hundreds of thousands of processes run-
ning heterogeneous algorithms in parallel, where
the assignment of algorithms and their parameters
can be adaptively tuned according to the available
resources and the progress of the whole system.

This project aims to develop the strongest paral-
lel solver, which has a novel algorithm implementa-
tion, to solve SVP. The SVP can be formulated as
an IQP (Integer Quadratic Problem) from a math-
ematical optimization point of view. However, the
formulated IQP instances can not be solved directly
in a reasonable amount of time by using the latest
commercial solvers, even if its dimension is about 50
(the highest dimension in the current SVP challenge
page is 180). Therefore, solving an instance of the
naive IQP formulation has no chance to beat the
record. In this project, we would like to develop a
parallel solver, which is referred to as POEM (Paral-
lel mathematical Optimization based EnuM). POEM
uses a mathematical optimization solver inside of
the ENUM algorithm to find a good feasible solution
faster and is parallelized by using the CMAP-LAP

framework. This project includes new algorithm de-
velopment and the parallel implementation of the
new algorithms. Therefore, if the solver can find a
good feasible solution in the highest dimension of
the SVP challenge page, it would have a big impact
on the research field.
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