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Can Artifical Intellience help us understand how planets evolve?

Unravelling the interior evolution of terrestrial planets using Machine Learning

N. Tosi (1), S. Agarwal (1,2), (1) Institute of Plan-
etary Research, German Aerospace Center (DLR),
Berlin and (2) Institute of Software Engineering and
Theoretical Computer Science, Technical University
Berlin

» The mantle of rocky planets behaves like a highly
viscous fluid over geological time scales. Key pa-
rameters and initial conditions to the non-linear par-
tial differential equations governing mantle flows
are poorly known.

 Using a dataset of 10,000 evolution simulations,
we trained a Neural Network, that can predict the
entire 1D temperature profile at any time in the
evolution with an accuracy of 99.7%.

* We also inverted synthetic observables to con-
strain model parameters using Mixture Density
Networks.

» We propose creating a more sophisticated thermo-
chemical dataset for future ML studies on the long-
term interior evolution of Mars.

Studying how rocky planets like Mercury, Venus,
the Earth and Mars evolve over billions of years re-
quires modelling mantle convection, the main driver
of planetary evolution. The physics of the mantle can
be quantified by solving equations of conservation
of mass, momentum and energy for an extremely
viscous fluid. These non-linear partial differential
equations are typically solved numerically using so-
phisticated fluid dynamics codes like GAIA [1]. The
parameters and initial conditions governing mantle
convection are poorly known. However, certain out-
puts of the simulations can be “observed” (directly
or indirectly) via remote-sensing or in situ measure-
ments performed by spacecraft missions. These
observations can help constrain key parameters and
initial conditions, thus elucidating the basic physics
and evolution of planets.

As shown in Fig. [2] we randomly generate sev-
eral values of five parameters and feed these to
2D forward simulations, performed with our finite-
volume mantle convection code GAIA on a quarter-
cylindrical grid. We then process the 2D temperature
fields output by GAIA and laterally average them to
obtain 1D temperature profiles. These can be pro-
cessed further to arrive at observables such as heat
flux at the surface, core-mantle boundary (CMB)
temperature, and elastic lithospheric thickness.
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Figure 1: Comparison of temperature profile predictions from the
trained NN surrogate (dashed lines) and GAIA simulations (solid
lines) for selected simulations from the test-set.

In [3], we trained a Neural Network (NN) to pre-
dict the full temperature profile at any point in the
evolution from 0 to 4.5 billion years. For that study,
we built a dataset with 10, 453 evolution simulations
for a Mars-like planet. The prediction results on se-
lected simulations in the test-set are shown in Fig.
On average, the NN can predict any point in the
temperature profile with a high accuracy of 99.7%. It
represents a significant advance over studies that
only predict the surface heat flux.

We then investigated the inverse problem, where,
we generated a higher spatial resolution dataset with
the same setup as [3], to overcome some conver-
gence issues and obtain a more balanced dataset.
Using Mixture Density Networks (MDNSs) [2] and their
corresponding loss function, we quantified the de-
gree to which each parameter can be constrained
given different number and combinations of synthetic
observables. Among the extensive results described
in [4], which is under reviewed, particularly interest-
ing is Fig. [8] which shows which quantities need to
be measured to constrain different parameters.

In the 2021 accounting period, we plan on learning
high-dimensional surrogates. While the 1D tempera-
ture profiles already contain a wealth of information
on the thermal and compositional state of the interior,
they lack characteristic convective structures such
as downwellings and plumes. Similarly, we also plan
on inverting the 2D temperature fields to infer the
same five parameters.

We propose generating a new and more realistic
dataset of 2D simulations of Mars interior evolution.
The datasets generated so far are already quite ad-
vanced and provided a good starting point, but em-
ploy simplifications that make them unsuitable for
a direct comparison with actual Mars data. We will
complement our purely Eulerian, grid-based simula-
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Figure 3: Constraints on parameters for different observables
and some selected combinations thereof as defined by the log-
likelihood (the higher is its valu, the better constrained is a pa-
rameter). The observables are surface heat flux (Qs), CMB heat
flux (Q.), accumulated radial contraction (Ryy, ), elastic lithosphere
thickness (D.), equivalent thickness of the melt produced (D yc14),
duration of volcanism (t.1.), and temperature profile (Ty,cot). The
parameters are reference viscosity (n..¢), activation energy (E)
and volume of diffusion creep (V'), enrichment factor of heat
sources in the crust (A), and initial mantle temperature (T).
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Using ML to study constraints on Mars’ thermal evolution.

tions with a self-consistent treatment of melt genera-
tion and extraction using an already implemented La-
grangian particle-in-cell method along with a variety
of accompanying processes, namely i) changes in
the composition and density of the mantle upon par-
tial melting and melt extraction, ii) mantle depletion
in incompatible elements (such as water and heat-
producing elements), and iii) their enrichment in the
crust. We will run the simulations in a 2D spherical
annulus geometry that we recently implemented in
our code GAIA. This preserves the correct inner-to-
outer-boundary surface ratio of a realistic 3D spheri-
cal shell geometry and hence delivers more closely
matching temperature distribution.
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