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In Short

• Trust Level Estimation

• Materials Simulation Databases

• Novel Materials Discovery

The products we use today are often limited
by the materials used to build them (e.g. phone
display durability, electric car battery capacity, so-
lar panel efficiency). Simulating materials proper-
ties to find good candidate materials has allowed
researchers and engineers to avoid wasteful trial
and error in costly laboratory settings. Materials
simulation databases such as the Novel Materials
Database (NOMAD, https://nomad-coe.eu/) allow
researchers to upload their simulation results to
an openly accessible database. As a result, re-
searchers are able to train models on datasets from
different sources to discover new candidate materi-
als and physical relationships [1].

The simulated materials property data hosted on
NOMAD (over 700 million simulations) come from a
wide variety of simulation programs (40+) employ-
ing a wide variety of physical and numerical set-
tings. For instance, a researcher may be looking
into TiO2 for heterogeneous catalysis applications
and run a simulation program to return the bandgap
that is converged with respect to the range of set-
tings/parameters available in the program. In this
simulation, the bandgap result may be converged
but another property like the dielectric constant may
not be converged with respect to the settings avail-
able. This work aims to assign trust levels to data
simulated using a density functional theory (DFT)
code. A trust level is assigned for a material prop-
erty result from a simulation (e.g. elastic constants,
bandgaps, effective masses, total energies) based
on what material was simulated and what settings
were used in the DFT simulation.

Research has shown that simple models on small
datasets (65 solid binary compounds) can be used to
estimate the total energy error resulting from employ-
ing unconverged settings in three density functional
theory (DFT) codes [2]. Recent work has demon-
strated that these total energy error estimates re-
sulting from unconverged settings can be improved
using more sophisticated statistical learning models

as seen in Figure 1. The learning curve, seen in
Figure 2, of using a random forest to model total
energies on the data from [2], shows the model per-
forming better on the validation dataset total as the
size of dataset increases. The performance of mod-
elling total energies with mean percentage errors of
around 20% is quite promising. Although this model
on data from [2] has shown great potential, a dataset
of only 65 binary materials is far too small to provide
predictions on the breadth of binary materials stored
in material simulation databases.

Figure 1: Random forest modelling results of total energy-per-
atom root mean square errors (RMSE) with respect to the basis
set size for FHI-aims data. The color bar shows the basis func-
tions per valence electron used for the binary compound in the
simulation in the validation dataset.

This project seeks to develop a dedicated data
set of 4028 binary semiconductor compounds to
improve the estimation of errors in material proper-
ties resulting from unconverged settings. Two DFT
codes, FHI-aims and exciting, which use very dif-
ferent basis sets are employed to simulate total en-
ergies, bandgaps, elastic constants and effective
masses of these 4028 binary compounds. For each
binary compound we also vary the physical and
numerical settings of the DFT codes. Statistical
learning models trained on this dedicated data will
enable us to derive trust level estimates for hetero-
geneous data of the materials science community,
as stored in the NOMAD laboratory. This will allow
data driven materials science researchers to select
datasets from NOMAD that meet a required esti-
mated trust level for a certain material property and
bypass issues that result from using material prop-
erties that are not converged with respect to DFT
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settings.

Figure 2: Learning curve of random forest algorithm modelling
energy differences with respect to numerical settings and basis
set size for FHI-aims DFT data of [1]. The red line shows the root
mean squared (RMSE) of the model on the training data. The
blue line shows the RMSE of the model on the validation dataset.

The research questions that this dedicated data
set will enable us to answer are: 1) What models
best estimate the material property error resulting
from unconverged DFT settings. 2) What can we
learn from modelling the materials class of binary
semiconductors in order to extend this approach to
wider material classes? 3) What models allow us to
reduce the uncertainty in our estimates of material
property errors so as to return narrow confidence
intervals.
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