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Improving ocean ecosystem predictions

Application of ensemble data assimilation for improved prediction of ocean ecosystem indicators

L. Nerger, Y. Sun, S. Vliegen, Alfred-Wegener-
Institut Helmholtz-Zentrum für Polar- und Meeres-
forschung

In Short

• Coupled ocean-biogeochemical modeling is used
to predict ocean ecosystem indicators

• Data assimilation is applied to combine the model
information with observational data

• Different data assimilation scenarios are studied
to assess their effect in improving the model pre-
dictions

In this project we study the effect of assimilat-
ing observations of ocean physics and biology onto
the prediction of ecosystem indicators like particular
organic carbon, trophic efficiency, or dissolved oxy-
gen. Data assimilation is the methodology to quan-
titatively combine models with observations. Here,
we apply ensemble data assimilation, which uses
an ensemble of model simulations to estimate the
uncertainty of the model state as well as the error-
covariances between different model variables. The
ensemble data assimilation methods are provided by
the parallel data assimilation framework PDAF [1,2],
which we have developed at the Alfred Wegener
Institute.

We use the ocean circulation model NEMO [4],
which is a widely used model for research and op-
erational use at the marine service CMEMS [3] of
the EU Copernicus program. The particular variant
of NEMO we use here is NEMO-NORDIC [5] that is
used operationally by the CMEMS Monitoring and
Forecasting Center for the Baltic Sea (BAL-MFC).
The model domain covers the full North Sea and
Baltic Sea as shown in Fig. 1. Compared to [5] we
use an upgraded version of NEMO-NORDIC, which
is based on NEMO 4.0 and uses a resolution of 1
nautical mile and 56 model layers. The model grid
has 1238 grid points in the longitudinal direction and
1046 in the latitudinal direction and hence a large po-
tential for scaling by using domain-decomposition. In
addition, the model setup uses the IO-Server XIOS
to allow for efficient parallel IO. NEMO has the fea-
ture to mask out MPI subdomains that do not contain
ocean points, so that the compute resources can be
optimally used.

The second model component is the marine bio-
geochemical model ERGOM see [6,7]. It’s structure

Figure 1: Model domain of NEMO-NORDIC used by the CMEMS
Monitoring Forecasting Center for the Baltic Sea showing the sea
surface temperature on 1st October 2018. The full North Sea and
Baltic Sea are simulated at a resolution of 1 nautical mile.

is shown in Fig. 2. ERGOM simulates biogeochem-
ical progresses and includes bacteria, two phyto-
plankton groups as well nutrients, zooplankton and
detritus. In addition a carbonate cycle allows to sim-
ulate the partial pressure of CO2, pH, and particular
carbon. The model was recently coupled to NEMO
within the BAL-MFC with the aim of operational bio-
geochemical forecasting.

The first objective of this project is to apply the en-
semble data assimilation to assimilate both sea sur-
face temperature and chlorophyll observations into
the coupled ocean-biogeochemical model NEMO-
ERGOM. The resulting model forecasts will be ana-
lyzed with regard to the influence of the assimilation
on ecosystem indicators, in particular particular or-
ganic carbon, trophic efficiency, dissolved oxygen,
primary production, and pH.

The second objective of this project is to exam-
ine how far strongly-coupled data assimilation can
be applied. In strongly-coupled data assimilation
cross-covariances between the ocean physics and
biogeochemistry are used to jointly update the cou-
pled model state. Thus, in practice this enable us
to e.g. assimilate sea surface temperature into the
biogeochemical model. This approach is expected
to provide joint model states of better consistency
compared to the case that the model physics and
biogeochemistry are corrected separately (so-called
weakly coupled data assimilation). Some positive
effects of strongly-coupled data assimilation were
reported by [8].
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Figure 2: Schematic overview of the ERGOM biogeochemical model (modified by I. Lorkowski (BSH) after [7]).

Finally, the effect of nonlinear data assimilation
methodology will be assessed in this project. It is
known that the dynamics of the ocean physics at the
high resolution of the model are nonlinear. Likewise
the ocean-biogeochemical processes are nonlinear
and the ocean variables are not normally distributed.
As such the usually used ensemble Kalman filters,
like the error-subspace transform filter [9] are ex-
pected to operate sub-optimally. In contrast nonlin-
ear data assimilation methods, e.g. particle filters,
can handle nonlinear models and the resulting non-
Gaussian error distribution. To assess the effect of
nonlinear data assimilation, we will apply the hybrid
nonlinear-Kalman ensemble transform filter [10] and
compare the results obtained using the linear en-
semble Kalman filter method with those of the hybrid
filter.

Due to the integration of an ensemble of model
state realizations, ensemble data assimilation is com-
putationally very costly. However, the methodology
has a high parallel scalability and is hence optimally
suited for a supercomputer like HLRN.
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