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In Short

• Wall-resolved large-eddy simulations of the flow
around wind turbine blade sections

• Investigation of noise generation mechanisms

• Simulation of the propagating sound waves with
volume discretization approaches to take into ac-
count effects of the wind turbine’s surroundings

• Developing a method for the accurate acoustic
prediction of wind turbine noise, with a focus on
far-field noise

Germany’s energy transition goals led the federal
government to decide that by 2050 80% of its en-
ergy demands ought to be met via renewable energy,
and greenhouse gas emissions ought to be reduced
by at least 80% [1]. To enable the expansion of wind
energy technologies, however, social acceptance
is of crucial importance. The impacts of wind tur-
bines on human health and well-being are among
the most-mentioned concerns, and they are known
to impose essential barriers [2]. The development
of reliable methods that allow for acoustic emissions
to be estimated is a key strategy to increase public
support and to open up new locations. Therefore,
the project’s objective is embodied by the ambition
to provide detailed insights into the mechanisms of
flow-induced sound generation and its propagation
via hybrid Computational Aeroacoustics (CAA).
In contrast to a direct noise computation (DNC) the
hybrid approach separates the computation of sound
generation and propagation, providing the opportu-
nity to employ tailored numerical methods for each
field [3] (see Figure 1). Since the simulated turbu-
lent fluctuations are rather sensitive to the quality of
the grids used [4], special attention is paid to accu-
rately capture the velocity and pressure fluctuations
in wall proximity (see Figure 2), which are essen-
tial to derive the acoustic source terms. Therefore,
incompressible, scale-resolving and time-accurate
wall-resolved large-eddy simulations (WRLES) of
the unsteady turbulent flow will be conducted with
the open-source code OpenFOAM [6,7] meeting
the grid requirements for WRLES suggested by Pi-
omelli and Chasnov [8]: ∆x+ = O(50−150), y+ < 2,

Figure 1: Hybrid and direct approach for aeroacoustic noise
prediction; the pursued path is framed [5].

Figure 2: Normalized wall pressure fluctuations on the section
of a wind turbine blade, obtained by WRLES with OpenFOAM,
needed to derive the acoustic source terms as input for the simu-
lation of the propagation [5].

∆z+ = O(15−40). Using blade-resolved simulations
for the extraction of acoustic source terms makes
it possible to not only predict broadband noise but
also tonal sounds, which are perceived as signifi-
cantly more disturbing [9]. Current approaches us-
ing Reynolds-Averaged Navier Stokes (RANS) sim-
ulations in combination with stochastic models can
only capture broadband noise [10]. The effect of
different varying angles of attack (AoA) and turbu-
lence intensities of the incoming flow on the acoustic
source terms will be investigated. For this purpose
a special source-term formulation [11–13] for inject-
ing artificial inflow turbulence will be implemented,
prohibiting that the synthetically generated turbu-
lence is damped out by numerical dissipation before
it reaches the leading edge.
Volume discretization methods will be used for the
calculation of the propagating sound, as they pro-
vide the ability to take into account effects of the
wind turbine’s surrounding on the propagating sound
waves, like diffraction, absorption, reflection or scat-
tering. Due to the great disparity in length and en-
ergy scales between the flow and the acoustic field,
CAA is a challenging multiscale problem. Especially
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the simulation of propagating sound over long dis-
tances demands for numerical schemes with a high
order of accuracy. The FLEXI framework [14,15] will
be used for this purpose as it is based on a highly
accurate and computationally efficient Discontinu-
ous Galerkin Spectral Element Method (DGSEM).
The focus of the first project phase is on WRLESs
of the flow around sections of a wind turbine rotor
blade. Moreover, initial acoustic propagation sim-
ulations with the FLEXI code will be run for noise
created by a loud speaker in order to validate the cor-
rect consideration of the effect of the surroundings
in the simulations and to investigate the influence
of the computational domain width. The numerical
results will be validated via measured data.
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