
Towards better models for ocean O2 and N2O

Optimisation of biogeochemical model parameters relevant for regions of low oxygen, and their
impact on the release of N2O

A. Oschlies, I. Kriest, V. Sauerland, GEOMAR
Helmholtz Centre for Ocean Research Kiel, Kiel Uni-
versity

In Short

• Global biogeochemical ocean models show large
uncertainties in their representation of regions with
low oxygen and N2O emissions.

• Optimisation against observations can help to re-
duce some of these uncertainties, and results in
improved global biogeochemical fluxes.

• We apply an optimisation framework to constrain
parameters relevant for oceanic oxygen minimum
zones (OMZs) and N2O production.

• The outcome is also expected to provide a better
understanding of OMZs, and the release of climate-
relevant N2O to the atmosphere.

Global ocean models that simulate biogeochem-
ical interactions are subject to many uncertainties,
among them those related to circulation and the pa-
rameterisation of biological processes. These uncer-
tainties can have large effects on simulated oxygen
concentrations [1,2], its oceanic inventory [3] and
volume of regions with low oxygen, so-called oxygen
minimum zones (OMZs) [3,4]. Possible reasons for
errors in the representation of OMZs are circulation
[5] or biogeochemical interactions [4]. Not only local,
but also remote biogeochemical interactions may
play a role [6], illustrating the need for long enough
model simulations.

OMZs are important as a habitat for marine or-
ganisms, among them commercially relevant fish
species [7]. They are also hot-spots for the release
of climate relevant nitrous oxide [8,9]. In this project,
we aim to better understand and improve the repre-
sentation of these regions in global biogeochemical
ocean models, and to disentangle the mutual ef-
fects of circulation and biogeochemistry. Our main
focus lies on the parameterisation of dissolved and
particulate organic matter supply to OMZs (as one
factor causing the formation and extent of OMZs),
and on the production and consumption of nitrous
oxide (N2O) via nitrification and denitrification.

To investigate these questions we apply a frame-
work for global biogeochemical ocean model calibra-
tion, that couples different biogeochemical models
to an offline circulation and a quasi-evolutionary op-
timisation algorithm [10].

Methods We apply a global model of oceanic bio-
geochemical processes (MOPS) [11], that has been
extended to simulate nitrous oxide and particle size
spectra, the latter following [12]. For coupling be-
tween the biogeochemical model and different and
circulations, we use the Transport Matrix Method [13]
which applies transport matrices (TMs) derived from
the advective and diffusive components of ocean
circulation models. We use three sets of TMs, de-
rived from different ocean circulation models of differ-
ent resolution and type: One is derived from a 2.8◦

global configuration of the MIT ocean model with 15
vertical levels [14]. We also apply TMs derived from
a circulation of the Estimating the Circulation and Cli-
mate of the Ocean (ECCO) project, which provides
circulation fields that yield a best fit to hydrographic
and remote sensing observations on a spatial reso-
lution of 1◦ × 1◦ horizontal resolution with 23 vertical
levels [15]. The third is derived from the University
of Victoria (UVic) Earth system model [16], and is
again of rather coarse spatial resolution (1.8◦ × 3.6◦).

All optimisations consider the misfit to global dis-
tributions of annual mean nutrients and oxygen. The
representation of OMZs is carried out using the met-
ric proposed by [4]. These two metrics are tested
and applied together with the normalised root-mean-
squared-error of N2O, and complemented by com-
parison against data sets for dissolved organic phos-
phorus (DOP) and organic particle abundance and
size spectra, and mesozooplankton biomass.

For biogeochemical model optimisiation we use
the Covariance Matrix Adaption Evolution Strategy
[17,18], a meta-heuristic method for parameter opti-
misation, which has shown good performance with
respect to quality and efficiency [10,19]. However,
good parameters (= biogeochemical model con-
stants) with respect to one type of observations can
be bad for another type. Single-objective optimisa-
tion can join different terms into one single metric
by assigning weights, but this approach can be diffi-
cult and subjective. To circumvent this, we also use
multi-objective optimisation to calibrate the model
against different objectives at the same time. The
outcome of such an optimisation is a limited number
of good incomparable solutions.

First results Encouragingly, optimisation reduces
the spread of global mean oxygen profiles and OMZ
volumes caused by different circulations and/or bio-
geochemistry found in earlier studies [1,3,4,20], even
if optimal parameters are transferred among different
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circulation. Overall, after optimisation the remaining
spread can be attributed almost equally to changes
in biogeochemistry and circulation (Fig. 1).
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Figure 1: Global mean oxygen concentrations below 500 m of
model optimised in three different circulations (MIT2.8, ECCO1.0,
UVic) and furher results from portability experiments. Colours
indicate different circulations. Line styles indicate different bio-
geochemical parameter sets. Open squares: with optimal model
parameters for the respective circulation. Stars: Observations.

Optimisation of models results in a good spatial
representation of N2O, even if optimisation was car-
ried out in the coarse resolution of MIT2.8 (Fig. 2).
Because multi-objective optimisation accounts for
several objectives at the same time, this good fit to
N2O does not sacrifice too much of the fit to nutri-
ents and oxygen, as indicated from the simultane-
ously good match to these tracers. All three optimal
models support the “hidden” N2O turnover during
denitrification suggested by [21], i.e., a high loss and
gain during denitrification, but only small net fluxes.

Observations [22] and first experiments, in which
the model is calibrated against observed particle
concentrations of large and small particles after only
a spin-up of 10 years further indicate that zooplank-
ton, as a component that controls formation, con-
sumption and vertical transport of particles, could be
essential for a correct representation of the particle
size distribution, and therefore can exert an influence
on OMZs.
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Figure 2: Simulated N2O (nmol L−1), averaged over ±5◦ along
23◦W, 110◦W and 160◦W , for a model setup from the Pareto-
front optimal with respect to N2O concentrations. Filled circles
denote observations, plotted on the same colour scale. Observa-
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