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In Short

• Global biogeochemical ocean models vary in
present day and future projections of many tracers
and processes.

• Variation can be attributed to representation of
biogeochemistry, circulation and model spin-up
time.

• We calibrate and assess global biogeochemical
model setups with regard to different time scales
and metrics, with the ultimate aim to provide reli-
able model parameters to an Earth system model.

Biogeochemical ocean models coupled to Earth
system models (ESMs) are applied not only to inves-
tigate the ocean’s interaction with the global carbon
cycle, but their projected primary production now
also serves as a basis to estimate future changes in
marine fisheries [1,2]. Further, the fraction of primary
production exported to the deep ocean supplies food
to mesopelagic fish, which could be considered as
potentially relevant for mankind, but which are poorly
understood [3,4]. However, uncertainties and com-
putational restrictions of these models can lead to
a large range of simulated primary production [5,6]
and OMZ volume [5], which might affect estimates
of higher trophic levels. The uncertainties can be
ascribed to biogeochemical parameterisations [7,8],
circulation [8,9], and model spinup time [10].
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tions in the high latitudes and along the equator. Especially the
more complicated models underestimate the mean phosphate in
the high northern latitudes, while the less complicated models
(which have a high half-saturation constant for phosphate uptake)
overestimate phosphate in the subtropics. For both models and
observations there is little effect of the sampling distribution on
the estimate of mean surface phosphate.

The average temporal variance (i.e. variance in time, averaged
meridionally) varies strongly with model type and also location:
N-DOP-01 shows a quite low temporal variance, which is far less
than observed. Most of the other models (except model NPZD-
DOP-29) show a good match to observed temporal variance in
the high northern latitudes. However, NP-DOP-11 and NPZ-DOP-
26 strongly overestimate the temporal variance in the Southern
Ocean. In this region, and for almost all models the sampling pat-
tern plays some role on the estimated temporal variance: sampling
the entire model domain yields a higher variance than when sam-
pling the model only during the times of observations (mainly aus-
tral summer). On the other hand, using the interpolated data set by
WOA yields an even slightly lower temporal variance in this region.

Summarizing, in most cases the data distribution does not seem
to have a large effect on the estimated means and variance. When

it does, it affects mainly the Southern Ocean. Differences between
the models (and the observations) are much larger than the differ-
ence between different types of data sets. The temporal variance at
the surface layer, in particular, depends strongly on the model
type. None of the models used here exhibits a good fit to observed
variance and mean at the same time.

4.3. Cost functions

So far, we have investigated the different models by visual
inspection only, which is prone to subjective biases. In the follow-
ing subsections we attempt a more objective assessment of the
models, and examine the details of the different models’ fit or mis-
fit with respect to the observations. As shown by the above analy-
sis, there is little difference between using the sampled data or the
interpolated fields of the World Ocean Atlas. In the following, we
will therefore assume that the ‘‘mean” (or sampled) WOA data
set provides a good basis for our model evaluation.

4.3.1. Effect of different metrics
Fig. 9 shows the model-data misfits for monthly phosphate

fields according to the different cost functions for the different

Fig. 6. Annual mean phosphate in different models, at 2000 m.
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Figure 1: Schematic of the global biogeochemical optimisation
platform. The biogeochemical ocean model is simulated in parallel
with λ different paramater sets. After evaluation of the misfit to
observations, the optimiser CMAES evaluates the different misfit
values, and proposes new sets of parameters. The cycle is
repeated until misfit converges to a sufficiently small value.

In addition, biogeochemical model calibration and
validation are often only carried out for a subset of
model tracers (usually nutrients, oxygen and inor-
ganic carbon) which may give rise to a calibration
bias [12]. However, observations of inorganic trac-
ers may not be sufficient to constrain parameters
of higher trophic levels [13]. We therefore consider
it necessary to better assess and evaluate global
biogeochemical ocean models with respect to or-
ganic components, and – if possible – also to better
constrain their uncertain model parameters. At the
same time we want to investigate how circulation
and model spin-up time reflect upon changes in bio-
geochemical turnover and functioning under future
climate change scenarios.

Figure 2: Graphic summarising the different sources of variability
among model setups from six different optimisations for various
diagnostics (rectangles). x-axis: the range due to different model
parameters. y-axis: range due to spin-up time. OMZ volume de-
fined by a criterion of 50 mmol O2 m−3. Fish biomass diagnosed
from export production and zooplankton grazing [3] and scaled
by OMZ thickness.

As a direct calibration of a computationally expen-
sive ESM does not seem feasible at this time, we
use a biogeochemical model calibration framework
(Fig. 1), that combines a marine biogeochemical
model of intermediate complexity [14] with offline cir-
culations using the Transport Matrix Method [15,16]
and an efficient optimisation algorithm [17,18]. This
tool has already been shown to perform well in global
biogeochemical model optimisation, while maintain-
ing computational efficiency [13,20].

To avoid the calibration bias we optimise the bio-
geochemical model against observations of nutri-
ents, oxygen, plankton, dissolved and particulate or-
ganic matter. First results of short-term optimisations
show that the choice of data sets can have a consid-
erable effect on some optimal parameters, and thus
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on global biogeochemical fluxes (Fig. 2), which can,
in end-to-end models, impinge on biomass estimates
of higher trophic levels.

Figure 3: OMZ volume bias over the trajectory of six model setups
(coloured lines). Circles indicate values listed in Table 2 of [5].
Vertical bars at the abscissa denote the model spin-up times
listed in [21].

An open question remains if and how higher or-
ganisms or their predators are affected by OMZs,
which are very sensitive to parameters arising from
the calibration strategy (Fig. 2), and can exhibit an in-
trinsic non-linear trajectory over time (Fig. 3). We will
investigate the cascading effects of biogeochemical
model uncertainty on model turnover, OMZ volume
and higher trophic levels. The effects of model uncer-
tainty will be compared to effects caused by transient
simulations with an ESM that includes the same bio-
geochemical model applied in the optimisations.
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