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Lead-free alternative for memory or piezoelectric applications

Structure-property relations in the Na; K, NbO; lead-free piezoelectric materials

D. Fritsch™2, ' Helmholtz-Zentrum Berlin fiir Materi-
alien und Energie, 2 Institute of Physics and Astron-
omy, University of Potsdam

» motivation: identify lead-free alternatives to most
commonly used piezoelectric ceramic lead zcir-
conate titanate (PZT)

» promising candidates NaNbO3; and KNbO3; show
range of phase transitions and possible poly-
morphs

» employ special quasirandom structures to investi-
gate Na; _,.K,.NbOj solid solution

« contribute to in-depth material understanding and
their potential as key materials in future memory
or piezoelectric applications

Over the last decade, a large proportion of ma-
terials science investigations has been devoted to
identify more environmently friendly materials for
several applications. This led to a surge in investiga-
tions for indium free photovoltaic devices, as well as
identifying lead-free alternatives for the industry stan-
dard lead zirconate titanate (PZT) for piezoelectric
applications [12]. The latter case is at the centre of
the proposed project, and has already seen the iden-
tification of NaNbO5;, KNbOs, and their solid solution
Na;_,.K,Oj3 as promising replacement candidates.

Experimental research efforts employing a
plethora of growth techniques, tools for structural
characterisation, and subsequent analyses into elec-
tronic and optical properties, allowed for a much
improved understanding of material properties in
general. On the theoretical side, the development of
ever more capable exchange and correlation func-
tionals to be employed in density functional theory
(DFT) calculations, and the wide-spread availability
of high-performance computing facilities, led to an in-
depth understanding of structure-property relations
in a wide range of material classes.

Here, we’re concerned with NaNbO3; and KNbO;
piezoelectric materials, occurring in a variety of struc-
tural polymorphs and showing several phase tran-
sitions [3J4]. We will perform first principles calcu-
lations based on density functional theory (DFT) to
shed some light on the intricate balance of the un-
derlying crystal structure on the electronic and opti-
cal properties, as well as subsequent quasiparticle

calculations for a better description of the optical
properties.

We employ two different parameterisation of the
density functional, namely the newly introduced
SCAN functional [5], and the more accurate hybrid
functional HSE06 [6]. While the SCAN functional
satisfies all known possible exact constraints for the
exact density functional and has been claimed to
match or improve on the accuracy of computation-
ally more demanding hybrid functionals [7], calcula-
tions based on hybrid functionals have been shown
to yield improved structural and electronic proper-
ties compared to standard parametrisations [8]. The
electronic band structure of Pbcrm NaNbOs is exem-
plarily shown in Fig. [1]. In order to get a better grasp
of the optical properties, additional quasiparticle cal-
culations based on the GIWW method introduced by
Hedin [9] will be performed as well.

Once the structural, electronic, and optical prop-
erties of the structural polymorphs (see Fig. [2] for
low temperature polymorphs of NaNbO; [4]) have
been obtained, additional calculations will investi-
gate the solid solution Na; _.K,NbO;. Here, we will
make use of so-called special quasirandom struc-
tures, introduced by Zunger et al. [10], to sample the
whole composition range within the solid solutions.
Thereby, the concept of special quasirandom struc-
tures allows to identify only symmetry-inequivalent
cation distributions within the solid solutions, ulti-
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Figure 1: Electronic band structure of NaNbOs crystallising in the
orthorhombic P phase (Pbcm) at room temperature. Shown are
the valence (green) and conduction (orange) bands, calculated
by means of a more accurate hybrid functional approach (shaded
semi-local functional).
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Figure 2: Crystalline phases of NaNbOs at room temperature and below in comparison to the cubic perovskite phase (Pm3m, SG
221) (right). From left: rhombohedral R3c phase (SG 161), orthorhombic Pbcm phase (SG 57), and monoclinic Pm phase (SG 6) Ey
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