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Elastic Turbulence in 3D geometries.

Characterising elastic turbulence in viscoelastic fluids at low Reynolds numbers.

R. van Buel, H. Stark, Institut fiir Theoretische
Physik, Technische Universitét Berlin

« Elastic turbulence, observed in viscoelastic fluids,
enhances heat and mass transport at very low
Reynolds numbers.

* The onset of elastic turbulence in a three-
dimensional geometry using numerical solutions
of the Oldroyd-B model will be investigated.

« Active open-loop control schemes will be applied
to the elastic turbulent state in three-dimensional
geometries.

Viscoelastic fluids, such as polymeric fluids, have
exceptionally useful properties compared to New-
tonian fluids. At small scales, viscoelastic fluids
exhibit transitions from laminar flows to non-laminar,
chaotic and turbulent flows. This is due to elastic
turbulence [1]). This property is useful for heat and
mass transport in flows at the micron scale, where in
Newtonian fluids transport is dominated by diffusion.
The relevant dimensionless number characterizing
viscoelastic fluids is the Weissenberg number Wi,
which compares the polymer relaxation time to the
characteristic time of the flow dynamics.

Elastic turbulence (see Fig. 1) shows many char-
acteristics similar to inertial turbulence [2]. The fluid
flow exhibits a significant increase in flow resistance
, random fluctuations of fluid velocity that increase
with fluid elasticity, intensified mixing of mass, and a
broad range of activated temporal or spatial frequen-
cies with power-law scaling [4]. The elastic com-
ponent of the fluid, quantified by the elastic stress
tensor 7, is affected by two processes: stretching
of the polymer molecules by velocity gradients and
relaxation of elastic stresses. The dominant process
depends on the value of the Weissenberg number.
At Wi « 1 the relaxation of the polymers is much
faster than the stretching time due to velocity gradi-
ents. The polymer acts like a rigid rod and the fluid
flow is Newtonian. For Wi > 1 stretching due to
velocity gradients overcomes relaxation. Polymers
are considerably elongated [3] and the polymeric
stresses grow. This effect is further enhanced by
curved streamlines [56].

Results of the 3D parallel plate geometry demon-
strate impressive qualitative similarities between the
numerical solutions of the Oldroyd-B model and ex-
perimental results. In Fig. [f|snapshots of the magni-
tude of the stress tensor and the magnitude of the

Experiment Stress

Velocity

Figure 1: Snapshots of the turbulent flow (experiment ) as
well as stress and velocity fields from numerical solutions of the
Oldroyd-B model.

velocity field are plotted, as well as a snapshot of ex-
perimental observations on the same geometry. The
order parameter for the three-dimensional parallel
plate geometry, defined as the time average of the
velocity fluctuations, is shown in fig. 2] as a function
of the Weissenberg number. A clear transition from
the laminar base flow (® = 0) to the occurrence of
a secondary flow (® > 0) is observed upon increas-
ing the elasticity of the fluid beyond a critical value
of Wi, = 1.2. The transition sets in with a sharp
increase in the order parameter which scales as a
supercritical pitchfork bifurcation ® ~ (Wi — Wi, )'/2.

Recently, we investigated applying an active open-
loop control scheme to the elastic turbulent state of a
viscoelastic fluid in a two-dimensional Taylor-Couette
geometry [7]. We have shown a transition to elastic
turbulence at Wi = 10 in earlier work, where we
applied a shear rate constant in time in the same ge-
ometry [8]. By applying time-modulated shear rates,
a form of active open-loop control, elastic turbulence
is reduced. The Deborah number is determined by
the rate of change in the shear flow and thus is given
by the ratio of the relaxation rate of the fluid over
the modulation frequency. We obtain numerical so-
lutions of the Oldroyd-B model and use two kinds of
time-modulated shear rates in the form of a square
or sine wave, which display similar results. Elastic
turbulence decreases upon increasing the modula-
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Figure 2: Order parameter ®, defined as the time average of the
velocity fluctuations, as a function of the Weissenberg number
Wi. The dotted line shows the scaling law (Wi — Wi.)'/2 with
Wi, =1.2.
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Figure 3: (a) Angular velocity Q2 versus time of the outer cylinder
for different driving protocols. (b) Schematic of the 2D Taylor-
Couette geometry. The outer cylinder rotates with the angular
velocity Q2. (c) Color-coded radial velocity field component .,
normalized by the maximum velocity umax for Wi = 21.4. Left:
at time t = 225 s, where ) is constant. Right: att = 375 s after
the square-wave modulated driving with De = 0.28 has been
switched on.

tion frequency and ultimately vanishes at a critical
Deborah number De... Here, the flow field assumes
the radially symmetric base flow of the non-turbulent
case.

The order parameter ® sharply increases above
a critical (inverse) Deborah number De_ -, which
depends on the Weissenberg number Wi, see
Fig. [ The transition displays a square-root scal-
ing, (De™* — De, ")'/2, implying that the transition is
supercritical. ThIS result is further tested by apply-
ing the modulated driving directly to the rest state
(open square symbols for Wi = 21.4 in Fig.[4). The
different initial conditions do not lead to different val-
ues of &, corresponding to a supercritical transition.
Another striking feature is that the order parame-
ter displays universal behavior around the transi-
tion. Indeed, as the inset of Fig.demonstrates, all
curves for different Wi fall on a single master curve
when we normalize ® by Wi*/2 and plot them versus
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Figure 4: Order parameter ® as a function of the inverse Deborah
number De™! = §/X in the case of square wave modulations for
four Weisenberg numbers. The time average of the secondary-
flow strength is taken over at least 500 rotations in the turbulent
regime; after the flow has been driven for 250 rotations with a
constant velocity. Open blue squares: the modulated driving
starts from the beginning. The dashed lines are square root fits
to® ~ y/De~! — De; . Inset: the rescaled data collapse onto
a single master curve.
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In this project we plan to expand active open-loop
control schemes applied to elastic turbulence in vis-
coelastic fluids to 3D geometries using the same ap-
proach as for the 2D case described above. Thereby
we provide an important step towards applying fur-
ther active control strategies to viscoelastic fluids.
By modulating the shear rate of a two-dimensional
Taylor-Couette flow, we have been able to control
the onset of elastic turbulence. Our earlier work
demonstrates how sensitive elastic turbulence is
to oscillating shear. Based on the strong similar-
ities observed in the order parameter of the two
and three-dimensional flows, we would like to ex-
pand our analysis of active open-loop control to fully
three-dimensional simulations. We will concentrate
on two exemplary 3D geometries: the van Karman
swirling flow in a parallel-plate geometry and the
Taylor-Couette geometry. Through this work, we
hope to inspire further experimental and theoreti-
cal investigations on active open-loop or feedback
control of viscoelastic fluid flow, for example, in mi-
crofluidic systems.

http://www.itp.tu-berlin.de/stark/
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