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In Short

• CMAP-LAP is a massively parallel solver for Short-
est Vector Problem (SVP) and related lattice prob-
lems.

• CMAP-LAP is the world first practical asyn-
chronous distributed-memory solver, which is built
on a new multi-algorithm paradigm.

A (full-rank) lattice of dimension n is the set of all
integral linear combinations

L = L(b1, . . . ,bn) :=
{

n∑
i=1

xibi : x1, . . . , xn ∈ Z

}
,

(0.1)
where b1, . . . ,bn are n linearly independent vectors
in Rn for a positive integer n. The set of the n vectors
{b1, . . . ,bn} is called a basis of L. When another
set of vectors {c1, . . . , cn} spans the same lattice
L, it is also called a basis of L. Furthermore, L(B)
denotes the lattice spanned by the row vectors of an
invertible matrix B. The n × n matrix B is called a
basis matrix of L.

Lattice problems are algorithmic problems that in-
volve lattices. Among lattice problems, the following
is of fundamental importance:

Definition 1 (Shortest Vector Problem (SVP)). Find
the shortest non-zero vector with respect to the `2-
norm in the lattice L(B), given a basis matrix B.

SVP is a discrete optimization problem for finding
xi’s in (0.1) and is shown to be NP-hard under ran-
domized reductions [1]. The length of the shortest
non-zero vector in L is denoted by λ1(L). SVP is
the problem of finding a lattice vector s ∈ L with
‖s‖ = λ1(L). It should be emphasized that there
is no known NP algorithm to check if ‖v‖ = λ1(L)
for a given v ∈ L. Therefore, we rely on Gaussian
Heuristic, which assumes that the number of vec-
tors in L ∩ S is roughly equal to vol(S)/vol(L) for a
measurable set S in Rn. By taking S to be the ball
of radius λ1(L) centered at the origin 0 in Rn, the
Gaussian Heuristic leads to an estimation of λ1(L)
as

λ1(L) ≈
(

vol(L)
ωn

)1/n
,

where ωn denotes the volume of the n-dimensional
unit ball. By Stirling’s formula, we have ωn ≈

( 2πe
n

)n/2 as n→∞, and define

GH(L) :=
√

n

2πevol(L)1/n. (0.2)

Then, λ1(L) ≈ GH(L) holds for random lattices L in
high dimensions n ≥ 40. (Gaussian Heuristic does
not hold in low dimensions.) For a vector v ∈ L,
the value ‖v‖/GH(L) is called the approximation
factor of v. Similarly, for a basis matrix B, the value
min1≤i≤n ‖bi‖/GH(L) is called the approximation
factor of B. They are evaluation metrics for the lattice
vector and the basis. Based on this observation, an
approximate variant of SVP is defined:

Definition 2 (Hermite Shortest Vector Problem
(HSVP)). Given a basis matrix B and an approx-
imation factor γ > 0, find a non-zero vector v ∈ L(B)
such that ‖v‖ ≤ γ · vol(L(B))1/n.

Another important lattice problem is:

Definition 3 (Closest Vector Problem (CVP)). Given
a basis of a lattice L and a target vector t, find a
vector in L that is closest to t.

Lattice problems are believed to be computation-
ally hard with both classical and quantum algo-
rithms [3] and have been used to construct various
cryptosystems [5], including post-quantum cryptog-
raphy. Therefore, developing a framework for lattice
problems is an important task both in large-scale
optimization and cryptanalysis. More specifically,
the security of many cryptosystems is based on the
hardness of an approximate variant of SVP. Lattice
problem solvers have been extensively tested at the
Darmstadt SVP challenge [6], which asks to find a
lattice vector shorter than 1.05 times the expected
length of a non-zero shortest lattice vector.

There are three basic families of lattice algorithms
that have been developed to solve practical lattice

Figure 1: Refactoring of the UG framework
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Figure 2: System overview of CMAP-LAP for SVP

problems: basis reduction, enumeration (ENUM),
and sieve. These algorithms have advantages and
disadvantages, and there is no single definite al-
gorithm for lattice problems. Therefore, practical
lattice-problem solvers generally rely on two or more
algorithms. G6K [2] implements a variety of ba-
sis reduction and sieve algorithms, and it is con-
sidered the state-of-the-art SVP solver. G6K is
equipped with both CPU and GPU highly parallelized
implementations, but it runs only on a single ma-
chine. Furthermore, the memory requirement is
exponential with respect to the dimension of the lat-
tice, which is inevitable for sieve algorithms. On the
other hand, MAP-SVP [7] is based on basis reduc-
tion and ENUM, which showed efficient scalability
above 100, 000 MPI processes. We designed Con-
figurable Massively Parallel Solver for Lattice Prob-
lems (CMAP-LAP) so that all features needed to
investigate massive parallelization for solving lattice
problems could be realized.

Existing solvers are limited to a fixed set of al-
gorithms and lack in flexibility. There are two
main obstacles in developing a large-scale multi-
paradigm solver: the need for an efficient high-level
information-sharing scheme across different algo-
rithms, and an adaptive task selection and distribu-
tion strategy for hundreds of thousands of processes.
This project is to provide solutions to overcome these
obstacles and develop a flexible framework to make
various algorithms work cooperatively on a large-
scale distributed computing platform. By exploit-
ing the mathematical properties of lattice, a clever
vector pooling scheme is introduced to minimize
the amount of information communicated among
processes. The original UG codes [8] have been
refactored into the Generalized Ubiquity Generator
framework (Generalized UG1) to allow more flexibility
necessary for lattice algorithms (see Figure 1). Par-
ticular emphasis is put on the efficient and versatile
message-sharing mechanics. Based on the General-
ized UG framework, we will develop the CMAP-LAP,
whose architecture is shown in Figure 2.
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