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The products we use today are often limited by
the materials used to build them (e.g. phone dis-
play durability, electric car battery capacity, solar
panel efficiency). Simulating materials properties
to find good candidate materials has allowed re-
searchers and engineers to avoid wasteful trial and
error in costly laboratory settings. Materials simula-
tion databases, such as the Novel Materials Discov-
ery (NOMAD, https://nomad-coe.eu/)) Repository,
allow researchers to upload their simulation results
to an openly accessible database. As a result, re-
searchers are able to train models on data sets from
different sources to discover new physical relation-
ships and candidate materials [1].

The biggest data store in
computational materials science.

Data are Findable and Al Ready

Develop exascale-ready libraries to
a the benefit of the entire
community.

Figure 1: Concept of the NOMAD Laboratory, the biggest data
store of computational materials-science data.

The simulated materials data hosted on NOMAD
(over 100 million simulations) are simulated from
a wide variety of density functional theory (DFT)
programs (40+) employing a wide variety of physical
and numerical settings (more information seen in
Figure[f). For instance, a researcher may be looking
into TiO, for heterogeneous catalysis applications
and run a simulation program to return the band
gap that is converged with respect to the range of
settings/parameters available in the program. In this
simulation, the band gap result may be converged
but another property like the dielectric constant may

not be converged with respect to the same settings.
This work aims to assign a trust level to a material
property (e.g. elastic constant, band gap, effective
mass, total energy) resulting from a simulation based
on what material was simulated and what settings
were used in the DFT simulation.

Research conducted by the applicants has shown
that simple models on small data sets (63 solid bi-
nary compounds) can be used to estimate the total
energy error resulting from employing unconverged
settings in three DFT codes [2]. Recent work has
demonstrated that these total energy error estimates
resulting from unconverged settings can be improved
using more sophisticated statistical learning models
(e.g. random forests) as seen in Figure [2]
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Figure 2: Random forest modeling on validation data of total
energy-per-atom errors with respect to the converged basis set
size. The color bar shows the number of basis functions per
valence electron (abbreviated P V.E.) used for each data point.

To model useful quantities such as elastic coeffi-
cients, band gaps and effective masses of materials,
we will need a much larger data set. Since these
properties may be sensitive to the structural config-
uration, we need to have representative data for all
Bravias lattices. We choose to study binary semicon-
ductors due to their simplicity and wide spread use
in fundamental science and industry. The applicants
plan to use HLRN servers to perform DFT simula-
tions of 1915 binary semiconductors, a number that
should provide sufficient training data to accurately
model the effect of DFT settings on the convergence
of these properties. The binary semiconductors and
correspond structures are chosen from the NOMAD
database. In Table[T] we see the number of unique
binary semiconductors hosted on NOMAD for each
Bravais lattice.



https://nomad-coe.eu/
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Bravais Lattice Number of Binaries

Face-centered cubic 185
Body-centered cubic 54
Primitive cubic 113
Primitive hexagonal 281
Primitive tetragonal 116
Body-centered tetragonal 89
Primitive rhombohedral 136
Primitive triclinic 97
Primitive monoclinic 195
Base-centered monoclinic 171
Primitive orthorhombic 337
Base-centered orthorhombic 84
Body-centered orthorhombic 24
Face-centered orthorhombic 33

Table 1: Number of simulated unique semiconductor binaries
hosted on NOMAD for each Bravais lattice.

We plan to consider these binary semiconduc-
tors using two DFT codes, FHI-aims and exciting to
compute total energies, band gaps, elastic constants
and effective masses. These material properties are
chosen since they they characterize materials from
different viewpoints. For each of the 1915 binary
semiconductors, we vary the numerical settings of
the DFT codes. This will allow us to get information
on how sensitive different quantities are with respect
to the numerical parameters. Statistical learning
models trained on this dedicated data will then en-
able us to derive trust level estimates for heteroge-
neous data of the materials science community, as
stored in the NOMAD Repository. This will allow
data driven materials science researchers to select
data sets from NOMAD that meet a required esti-
mated trust level for a certain material property and
bypass issues that result from using data that are
not converged with respect to DFT settings.

We emphasize that this work will provide at the
same time a comprehensive set of benchmark data
that is urgently needed in the community. In a next
step, we plan to invite other DFT code developers
to perform similar experiments with their code. The
ultimate aim is that any simulation using any DFT
code on a materials database will have a model
to predict how far a material property is from its
converged value.

The research questions that this dedicated data
set will enable us to answer are: 1) What can we
learn from modeling the material class of binary
semiconductors in order to extend this approach
to wider material classes? 2) What models best
estimate the material property error resulting from
unconverged DFT settings. 3) What models allow us
to reduce the uncertainty in our estimates of material
property errors so as to return narrow confidence

intervals.
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